Advertisement

Fabrication and Magnetic Characterization of CFO/NiO and CFO/NiS Heterostructures

  • Ahmed R. MahbubEmail author
  • Ariful Haque
  • Kartik Ghosh
Original Paper
  • 13 Downloads

Abstract

Magnetic analysis of different magnetic bilayers and multilayers is an important step for designing next-generation multiferroic heterostructures. In this study, we have investigated the magnetic interaction at the interface in CFO/NiO hetero-structures grown by pulsed laser deposition on sapphire substrates. The thin film heterostructure samples were characterized by means of X-ray diffraction, scanning electron microscopy (SEM), energy disruptive X-ray spectroscopy (EDS), and superconducting quantum interference device (SQUID) for magnetic measurements. The XRD analysis on different samples shows the crystalline growth of the thin films. The SEM-EDS analysis provides information about structural and elemental compositions of the heterostructure films. A SQUID magnetometer was used to investigate the temperature and field-dependent magnetic properties. To better understand the magnetic properties of the thin film heterostructure samples, zero field cool (ZFC) and field cool (FC) magnetization data were analyzed. At low temperature, ferromagnetic hysteresis loop was observed. A shift in the M-H hysteresis curve was observed for the FC data from the ZFC data, which indicates the presence of exchange bias effect. In addition, we have examined the effect of antiferromagnetic NiS thin films on ferromagnetism of CFO. This study on the magnetic interaction between a ferromagnetic layer and an antiferromagnetic layer can advance the frontier for applications in spin valves, magnetic sensors, and magnetic random access memory.

Keywords

NiO CFO NiS Heterostructure Magnetic measurements Ferromagnetism 

Notes

Acknowledgements

Ariful Haque and Ahmed R. Mahbub contributed equally to this paper as first authors. We would like to deeply thank the Wright-Patterson Air Force Base for providing us with the technical assistance during data acquisition.

Funding Information

We would like to acknowledge the National Science Foundation (NSF) grants (DMR-0723105 and DMR-0821159) for supporting this study.

References

  1. 1.
    Ramesh, R., Spaldin, N.A.: Multiferroics: progress and prospects in thin films. Nat. Mater. 6, 21–29 (2007).  https://doi.org/10.1038/nmat1805 ADSCrossRefGoogle Scholar
  2. 2.
    Spaldin, N.A., Fiebig, M.: The renaissance of magnetoelectric multiferroics. Science. 309, 391–392 (2005).  https://doi.org/10.1126/science.1113357. CrossRefGoogle Scholar
  3. 3.
    Scott, J.F.: Data storage: multiferroic memories. Nat. Mater. 6, 256–257 (2007).  https://doi.org/10.1038/nmat1868. ADSCrossRefGoogle Scholar
  4. 4.
    Mamun, M.A., Haque, A., Pelton, A., Paul, B., Ghosh, K.: Structural, electronic, and magnetic analysis and device characterization of ferroelectric-ferromagnetic heterostructure (BZT-BCT/LSMO/LAO) devices for multiferroic applications. IEEE Trans. Magn. 54, 1–8 (2018).  https://doi.org/10.1109/TMAG.2018.2873513 CrossRefGoogle Scholar
  5. 5.
    Vopson, M.M.: Fundamentals of multiferroic materials and their possible applications. Crit. Rev. Solid State Mater. Sci. 40, 223–250 (2015).  https://doi.org/10.1080/10408436.2014.992584 ADSCrossRefGoogle Scholar
  6. 6.
    Rana, S.B., Singh, R.P.P.: Investigation of structural, optical, magnetic properties and antibacterial activity of Ni-doped zinc oxide nanoparticles. J. Mater. Sci. Mater. Electron. 27, 9346–9355 (2016).  https://doi.org/10.1007/s10854-016-4975-6 CrossRefGoogle Scholar
  7. 7.
    Arya, S., Lehana, P.K., Rana, S.B.: Synthesis of zinc oxide nanoparticles and their morphological, optical, and electrical characterizations. J. Electron. Mater. 46, 4604–4611 (2017).  https://doi.org/10.1007/s11664-017-5469-x ADSCrossRefGoogle Scholar
  8. 8.
    Mukherjee, D., Hyde, R., Hordagoda, M., Bingham, N., Srikanth, H., Witanachchi, S., Mukherjee, P.: Challenges in the stoichiometric growth of polycrystalline and epitaxial PbZr0.52Ti0.48O3/La0.7Sr0.3MnO3 multiferroic heterostructures using pulsed laser deposition. J. Appl. Phys. 112, 064101 (2012).  https://doi.org/10.1063/1.4751027 ADSCrossRefGoogle Scholar
  9. 9.
    A.R. Mahbub, A. Haque, M.A.-A. Mamun, K. Ghosh, Fabrication and thickness dependent magnetic studies of CFO/LSMO/LAO multiferroic heterostructures, Appl. Surf. Sci. (2019) Under review.Google Scholar
  10. 10.
    Néel, M.L.: Propriétés magnétiques des ferrites ; ferrimagnétisme et antiferromagnétisme. Ann. Phys. 12, 137–198 (1948).  https://doi.org/10.1051/anphys/194812030137 CrossRefGoogle Scholar
  11. 11.
    Arcas, J., Hernando, A., Barandiarán, J.M., Prados, C., Vázquez, M., Marín, P., Neuweiler, A.: Soft to hard magnetic anisotropy in nanostructured magnets. Phys. Rev. B. 58, 5193–5196 (1998).  https://doi.org/10.1103/PhysRevB.58.5193 ADSCrossRefGoogle Scholar
  12. 12.
    M.A. Mamun, A. Haque, A. Pelton, B. Paul, K. Ghosh, Fabrication and ferromagnetic resonance study of BZT-BCT/LSMO heterostructure films on LAO and Pt, J. Magn. Magn. Mater. (2019) Accepted (In press)Google Scholar
  13. 13.
    Haque, A., Mamun, M.A., Taufique, M.F.N., Karnati, P., Ghosh, K.: Large magnetoresistance and electrical transport properties in reduced graphene oxide thin film. IEEE Trans. Magn. 54, 1–9 (2018).  https://doi.org/10.1109/TMAG.2018.2873508 CrossRefGoogle Scholar
  14. 14.
    Roth, W.L.: Neutron and optical studies of domains in NiO. J. Appl. Phys. 31, 2000–2011 (1960).  https://doi.org/10.1063/1.1735486 ADSCrossRefGoogle Scholar
  15. 15.
    Haque, A., Mamun, M.A., Taufique, M.F.N., Karnati, P., Ghosh, K.: Temperature dependent electrical transport properties of high carrier mobility reduced graphene oxide thin film devices. IEEE Trans. Semicond. Manuf. 31, 535–544 (2018).  https://doi.org/10.1109/TSM.2018.2873202 CrossRefGoogle Scholar
  16. 16.
    Patil, P.S., Kadam, L.D.: Preparation and characterization of spray pyrolyzed nickel oxide (NiO) thin films. Appl. Surf. Sci. 199, 211–221 (2002).  https://doi.org/10.1016/S0169-4332(02)00839-5 ADSCrossRefGoogle Scholar
  17. 17.
    Long, H., Shi, T., Hu, H., Jiang, S., Xi, S., Tang, Z.: Growth of hierarchal mesoporous NiO nanosheets on carbon cloth as binder-free anodes for high-performance flexible lithium-ion batteries. Sci. Rep. 4, 7413–7413 (2014).  https://doi.org/10.1038/srep07413. ADSCrossRefGoogle Scholar
  18. 18.
    Chen, H.-L., Lu, Y.-M., Hwang, W.-S.: Characterization of sputtered NiO thin films. Surf. Coat. Technol. 198, 138–142 (2005).  https://doi.org/10.1016/j.surfcoat.2004.10.032 CrossRefGoogle Scholar
  19. 19.
    Mukherjee, D., Hordagoda, M., Lampen, P., Phan, M.-H., Srikanth, H., Witanachchi, S., Mukherjee, P.: Enhanced magnetism and ferroelectricity in epitaxial Pb(Zr0.52Ti0.48)O3/CoFe2O4/La0.7Sr0.3MnO3 multiferroic heterostructures grown using dual-laser ablation technique. J. Appl. Phys. 115, 17D707 (2014).  https://doi.org/10.1063/1.4863165 CrossRefGoogle Scholar
  20. 20.
    Mukherjee, D., Dhakal, T., Hyde, R., Mukherjee, P., Srikanth, H., Witanachchi, S.: Role of epitaxy in controlling the magnetic and magnetostrictive properties of cobalt ferrite–PZT bilayers. J. Phys. Appl. Phys. 43, 485001 (2010).  https://doi.org/10.1088/0022-3727/43/48/485001 CrossRefGoogle Scholar
  21. 21.
    Ney, A., Kammermeier, T., Ney, V., Ollefs, K., Ye, S.: Limitations of measuring small magnetic signals of samples deposited on a diamagnetic substrate. J. Magn. Magn. Mater. 320, 3341–3346 (2008).  https://doi.org/10.1016/j.jmmm.2008.07.008 ADSCrossRefGoogle Scholar
  22. 22.
    Li, Y.-C., Pan, D.-F., Wu, J., Li, Y., Wang, G., Liu, J.-M., Wan, J.-G.: Manipulating the exchange bias effect of Pb(Zr0.52Ti0.48)O3/CoFe2O4/NiO heterostructural films by electric fields. Appl. Phys. Lett. 109, 172904 (2016).  https://doi.org/10.1063/1.4966545 ADSCrossRefGoogle Scholar
  23. 23.
    Huang, W., Zhu, J., Zeng, H.Z., Wei, X.H., Zhang, Y., Li, Y.R.: Strain induced magnetic anisotropy in highly epitaxial CoFe2O4 thin films. Appl. Phys. Lett. 89, 262506 (2006).  https://doi.org/10.1063/1.2424444 ADSCrossRefGoogle Scholar
  24. 24.
    Koehler, R.F., White, R.L.: Metal-to-semimetal transition in NiS. J. Appl. Phys. 44, 1682–1686 (1973).  https://doi.org/10.1063/1.1662431 ADSCrossRefGoogle Scholar
  25. 25.
    Li, S., John, V.T., O’Connor, C., Harris, V., Carpenter, E.: Cobalt-ferrite nanoparticles: structure, cation distributions, and magnetic properties. J. Appl. Phys. 87, 6223–6225 (2000).  https://doi.org/10.1063/1.372661 ADSCrossRefGoogle Scholar
  26. 26.
    Raghunathan, A., Nlebedim, I.C., Jiles, D.C., Snyder, J.E.: Growth of crystalline cobalt ferrite thin films at lower temperatures using pulsed-laser deposition technique. J. Appl. Phys. 107, 09A516 (2010).  https://doi.org/10.1063/1.3357315 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ahmed R. Mahbub
    • 1
    • 2
    Email author
  • Ariful Haque
    • 1
    • 3
  • Kartik Ghosh
    • 1
  1. 1.Department of Physics, Astronomy and Materials ScienceMissouri State UniversitySpringfieldUSA
  2. 2.Department of Electrical and Computer EngineeringUniversity of MarylandCollege ParkUSA
  3. 3.Department of Materials Science and EngineeringNorth Carolina State UniversityRaleighUSA

Personalised recommendations