Advertisement

Influence of Viscosity on Dynamic Magnetization of Thermally Blocked Iron Oxide Nanoparticles Characterized by a Sensitive AC Magnetometer

  • Mohd Mawardi SaariEmail author
  • Nazatul Shareena Suhaimi
  • Mohd Herwan Sulaiman
  • Nurul Akmal Che Lah
  • Kenji Sakai
  • Toshihiko Kiwa
  • Keiji Tsukada
Original Paper
  • 18 Downloads

Abstract

In this work, we show that the viscosity of carrier liquid affects the dynamic magnetization of thermally blocked multi-core iron oxide nanoparticles. The core size of the nanoparticles was determined from the magnetization curve measured by a specially developed high-Tc SQUID magnetometer and calculated to be 11.7 nm. Using an AC magnetometer developed based on induction coils, the dynamic magnetization of the multi-core iron oxide nanoparticle solution was measured from 3 Hz to 10.48 kHz. Later, we reconstructed of the hydrodynamic size distribution of the particles by assuming a log-normal distribution of particle size in an AC susceptibility model by Shliomis and Stepanov, which accounts for anisotropic directions of the easy axes of magnetic nanoparticles with respect to the excitation field direction. The reconstructed hydrodynamic sizes showed an average diameter of 130 nm and agreed with the size determined by dynamic light scattering method. In the case of increasing viscosity of the carrier liquids from 0.89 to 8.11 mPa s, the dynamic magnetization peaks of the imaginary component have shifted to a lower frequency region. We showed that the harmonics ratio and phase delay upon the magnetic field excitation at 30 Hz could also be used to determine the viscosity of carrier liquid independently.

Keywords

Brownian relaxation Dynamic magnetization Iron oxide nanoparticles Magnetometer 

Notes

Funding Information

This work was supported by the Ministry of Higher Education of Malaysia under grant number of RDU 160115, Research Management Center of Universiti Malaysia Pahang under grant number of RDU 170377, and the “Strategic Promotion of Innovative R&D” of the Japan Science and Technology Agency (JST).

References

  1. 1.
    Saritas, E.U., Goodwill, P.W., Croft, L.R., Konkle, J.J., Lu, K., Zheng, B., Conolly, S.M.: Magnetic particle imaging (MPI) for NMR and MRI researchers. J. Magn. Reson. 229, 116–126 (2013).  https://doi.org/10.1016/j.jmr.2012.11.029 ADSCrossRefGoogle Scholar
  2. 2.
    Gleich, B., Weizenecker, J.: Tomographic imaging using the nonlinear response of magnetic particles. Nature. 435, 1214–1217 (2005).  https://doi.org/10.1038/nature03808 ADSCrossRefGoogle Scholar
  3. 3.
    Goodwill, P.W., Scott, G.C., Stang, P.P., Conolly, S.M.: Narrowband magnetic particle imaging. IEEE Trans. Med. Imaging. 28, 1231–1237 (2009).  https://doi.org/10.1109/TMI.2009.2013849 CrossRefGoogle Scholar
  4. 4.
    Bai, S., Hirokawa, A., Tanabe, K., Sasayama, T., Yoshida, T., Enpuku, K.: Narrowband magnetic particle imaging utilizing electric scanning of field free point. IEEE Trans. Magn. 51, 1–4 (2015).  https://doi.org/10.1109/TMAG.2015.2438029 CrossRefGoogle Scholar
  5. 5.
    Vogel, P., Rückert, M.A., Klauer, P., Kullmann, W.H., Jakob, P.M., Behr, V.C.: First in vivo traveling wave magnetic particle imaging of a beating mouse heart. Phys. Med. Biol. 61, 6620–6634 (2016).  https://doi.org/10.1088/0031-9155/61/18/6620 CrossRefGoogle Scholar
  6. 6.
    Graeser, M., Knopp, T., Szwargulski, P., Friedrich, T., von Gladiss, A., Kaul, M., Krishnan, K.M., Ittrich, H., Adam, G., Buzug, T.M.: Towards picogram detection of superparamagnetic Iron-oxide particles using a gradiometric receive coil. Sci. Rep. 7, 6872 (2017).  https://doi.org/10.1038/s41598-017-06992-5 ADSCrossRefGoogle Scholar
  7. 7.
    Ozel, F., Kockar, H., Karaagac, O.: Growth of iron oxide nanoparticles by hydrothermal process: effect of reaction parameters on the nanoparticle size. J. Supercond. Nov. Magn. 28, 823–829 (2015).  https://doi.org/10.1007/s10948-014-2707-9 CrossRefGoogle Scholar
  8. 8.
    Connord, V., Mehdaoui, B., Tan, R.P., Carrey, J., Respaud, M.: An air-cooled Litz wire coil for measuring the high frequency hysteresis loops of magnetic samples - a useful setup for magnetic hyperthermia applications. Rev. Sci. Instrum. 85, 093904 (2014).  https://doi.org/10.1063/1.4895656 ADSCrossRefGoogle Scholar
  9. 9.
    Mamiya, H., Jeyadevan, B.: Hyperthermic effects of dissipative structures of magnetic nanoparticles in large alternating magnetic fields. Sci. Rep. 1, 157 (2011).  https://doi.org/10.1038/srep00157 ADSCrossRefGoogle Scholar
  10. 10.
    Enpuku, K., Tanaka, T., Matsuda, T., Dang, F., Enomoto, N., Hojo, J., Yoshinaga, K., Ludwig, F., Ghaffari, F., Heim, E., Schilling, M.: Properties of magnetic nanoparticles in the Brownian relaxation range for liquid phase immunoassays. J. Appl. Phys. 102, 054901 (2007).  https://doi.org/10.1063/1.2775882 ADSCrossRefGoogle Scholar
  11. 11.
    Calero-DdelC, V.L., Santiago-Quiñonez, D.I., Rinaldi, C.: Quantitative nanoscale viscosity measurements using magnetic nanoparticles and SQUID AC susceptibility measurements. Soft Matter. 7, 4497 (2011).  https://doi.org/10.1039/c0sm00902d ADSCrossRefGoogle Scholar
  12. 12.
    Karaagac, O., Kockar, H.: A simple way to obtain high saturation magnetization for superparamagnetic iron oxide nanoparticles synthesized in air atmosphere: optimization by experimental design. J. Magn. Magn. Mater. 409, 116–123 (2016).  https://doi.org/10.1016/j.jmmm.2016.02.076 ADSCrossRefGoogle Scholar
  13. 13.
    Ludwig, F., Balceris, C., Jonasson, C., Johansson, C.: Analysis of ac susceptibility spectra for the characterization of magnetic nanoparticles. 9464 (2017).  https://doi.org/10.1109/TMAG.2017.2693420
  14. 14.
    Ludwig, F., Heim, E., Schilling, M.: Characterization of superparamagnetic nanoparticles by analyzing the magnetization and relaxation dynamics using fluxgate magnetometers. J. Appl. Phys. 101, 113909 (2007).  https://doi.org/10.1063/1.2738416 ADSCrossRefGoogle Scholar
  15. 15.
    Bogren, S., Fornara, A., Ludwig, F., del Puerto Morales, M., Steinhoff, U., Hansen, M., Kazakova, O., Johansson, C.: Classification of magnetic nanoparticle systems—synthesis, standardization and analysis methods in the nanomag project. Int. J. Mol. Sci. 16, 20308–20325 (2015).  https://doi.org/10.3390/ijms160920308 CrossRefGoogle Scholar
  16. 16.
    Sasayama, T., Yoshida, T., Saari, M.M.M., Enpuku, K.: Comparison of volume distribution of magnetic nanoparticles obtained from M-H curve with a mixture of log-normal distributions. J. Appl. Phys. 117, 17D155 (2015).  https://doi.org/10.1063/1.4919268 CrossRefGoogle Scholar
  17. 17.
    Berkov, D.V., Görnert, P., Buske, N., Gansau, C., Mueller, J., Giersig, M., Neumann, W., Su, D.: New method for the determination of the particle magnetic moment distribution in a ferrofluid. J. Phys. D. Appl. Phys. 33, 331–337 (2000).  https://doi.org/10.1088/0022-3727/33/4/303 ADSCrossRefGoogle Scholar
  18. 18.
    Saari, M.M., Sakai, K., Kiwa, T., Sasayama, T., Yoshida, T., Tsukada, K.: Characterization of the magnetic moment distribution in low-concentration solutions of iron oxide nanoparticles by a high- T c superconducting quantum interference device magnetometer. J. Appl. Phys. 117, 17B321 (2015).  https://doi.org/10.1063/1.4919043 CrossRefGoogle Scholar
  19. 19.
    Suhaimi, N.S., Saari, M.M., Mohamed, A.I., et al.: Development of a compact and sensitive AC magnetometer for evaluation of magnetic nanoparticles solution. In: 2017 IEEE 8th Control and System Graduate Research Colloquium (ICSGRC). IEEE, pp 221–224 (2017)Google Scholar
  20. 20.
    Shliomis, M.I., Stepanov, V.I.: Frequency dependence and long time relaxation of the susceptibility of the magnetic fluids. J. Magn. Magn. Mater. 122, 176–181 (1993).  https://doi.org/10.1016/0304-8853(93)91067-H ADSCrossRefGoogle Scholar
  21. 21.
    Saari, M.M., Suhaimi, N.S., Razali, S., et al.: Development of a resonant excitation coil of AC magnetometer for evaluation of magnetic fluid. J Telecommun Electron Comput Eng. 10, 127–130 (2018)Google Scholar
  22. 22.
    Svedlindh, P., Jonsson, T., García-Palacios, J.L.: Intra-potential-well contribution to the AC susceptibility of a noninteracting nano-sized magnetic particle system. J. Magn. Magn. Mater. 169, 323–334 (1997).  https://doi.org/10.1016/S0304-8853(96)00756-1 ADSCrossRefGoogle Scholar
  23. 23.
    Ludwig, F., Balceris, C., Johansson, C.: The anisotropy of the AC susceptibility of immobilized magnetic nanoparticles—the influence of intra-potential-well contribution on the AC susceptibility spectrum. IEEE Trans. Magn. 53, 1–4 (2017).  https://doi.org/10.1109/TMAG.2017.2692038 CrossRefGoogle Scholar
  24. 24.
    Enpuku, K., Sasayama, T., Yoshida, T.: Estimation of magnetic moment and anisotropy energy of magnetic markers for biosensing application. J. Appl. Phys. 119, 184902 (2016).  https://doi.org/10.1063/1.4948951 ADSCrossRefGoogle Scholar
  25. 25.
    Prieto Astalan, A., Jonasson, C., Petersson, K., Blomgren, J., Ilver, D., Krozer, A., Johansson, C.: Magnetic response of thermally blocked magnetic nanoparticles in a pulsed magnetic field. J. Magn. Magn. Mater. 311, 166–170 (2007).  https://doi.org/10.1016/j.jmmm.2006.10.1182 ADSCrossRefGoogle Scholar
  26. 26.
    van Rijssel, J., Kuipers, B.W.M., Erné, B.H.: Non-regularized inversion method from light scattering applied to ferrofluid magnetization curves for magnetic size distribution analysis. J. Magn. Magn. Mater. 353, 110–115 (2014).  https://doi.org/10.1016/j.jmmm.2013.10.025 ADSCrossRefGoogle Scholar
  27. 27.
    Ahrentorp, F., Astalan, A.P., Jonasson, C., et al.: Sensitive high frequency AC susceptometry in magnetic nanoparticle applications. AIP Conf Proc. 1311, 213–223 (2010).  https://doi.org/10.1063/1.3530015 ADSCrossRefGoogle Scholar
  28. 28.
    Rauwerdink, A.M., Weaver, J.B.: Harmonic phase angle as a concentration-independent measure of nanoparticle dynamics. Med. Phys. 37, 2587–2592 (2010).  https://doi.org/10.1118/1.3426294 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Electrical & Electronic EngineeringUniversiti Malaysia Pahang, Pekan CampusPekanMalaysia
  2. 2.Innovative Manufacturing, Mechatronics and Sports Lab (iMAMs), Faculty of Manufacturing EngineeringUniversiti Malaysia Pahang, Pekan CampusPekanMalaysia
  3. 3. Graduate School of Interdisciplinary Science and Engineering in Health SystemsOkayama UniversityOkayamaJapan

Personalised recommendations