Advertisement

Superconductivity in SrTiO3: Dielectric Function Method for Non-Parabolic Bands

  • S. N. KliminEmail author
  • J. Tempere
  • J. T. Devreese
  • J. He
  • C. Franchini
  • G. Kresse
Original Paper
  • 27 Downloads

Abstract

The dielectric function method for superconductivity has been applied to SrTiO3 accounting for the non-parabolic dispersion of charge carriers in the conduction band and for the dispersion of optical phonons based on density functional theory calculations. The obtained critical temperatures of the superconducting phase transition in SrTiO3 are in agreement with experiments in the density range n ∼ 5 × 1018 to 5 × 1020cm− 3. The dielectric function method predicts also the sign of the anomalous isotope effect in strontium titanate, in line with recent observations.

Keywords

Superconductivity Strontium titanate Dielectric function method 

Notes

Acknowledgements

This work has been supported by the joint FWO-FWF project POLOX (Grant No. I 2460-N36).

References

  1. 1.
    Schooley, J., Hosler, W., Cohen, M.L.: Phys. Rev. Lett. 12, 474 (1964)CrossRefADSGoogle Scholar
  2. 2.
    Koonce, C.S., et al.: Phys. Rev. 163, 380–390 (1967)CrossRefADSGoogle Scholar
  3. 3.
    Binnig, G., et al.: Phys. Rev. Lett. 45, 1352–1355 (1980)CrossRefADSGoogle Scholar
  4. 4.
    Lin, X., et al.: Phys. Rev. Lett. 112, 207002 (2014)CrossRefADSGoogle Scholar
  5. 5.
    Collignon, C., et al.: Phys. Rev. B 96, 224506 (2017)CrossRefADSGoogle Scholar
  6. 6.
    Lin, X., et al.: Phys. Rev. B 92, 174504 (2015)CrossRefADSGoogle Scholar
  7. 7.
    Rischau, C.W., et al.: Nat. Phys. 13, 643 (2017)CrossRefGoogle Scholar
  8. 8.
    Swartz, A.G., et al.: PNAS 115, 1475 (2018)CrossRefADSGoogle Scholar
  9. 9.
    Rowley, S.E., et al.: arXiv:1801.08121
  10. 10.
    Ruhman, J., Lee, P.A.: Phys. Rev. B 94, 224515 (2016)CrossRefADSGoogle Scholar
  11. 11.
    Rosenstein, B., et al.: Phys. Rev. B 94, 024505 (2016)CrossRefADSGoogle Scholar
  12. 12.
    Klimin, S.N., Tempere, J., Devreese, J.T., der Marel, D.: J. Sup. Nov. Magn. 30, 757 (2017)CrossRefGoogle Scholar
  13. 13.
    Klimin, S.N., Tempere, J., Devreese, J.T., van der Marel, D.: Phys. Rev. B 89, 184514 (2014)CrossRefADSGoogle Scholar
  14. 14.
    Edge, J.M., et al.: Phys. Rev. Lett. 115, 247002 (2015)CrossRefADSGoogle Scholar
  15. 15.
    Wölfle, P., Balatsky, A.V.: arXiv:1803.06993
  16. 16.
    Gor’kov, L.P.: J. Supercond. Nov. Magn. 30, 845 (2017)CrossRefGoogle Scholar
  17. 17.
    McMillan, W.L.: Phys. Rev. 167, 331 (1968)CrossRefADSGoogle Scholar
  18. 18.
    Kirzhnits, D.A., Maksimov, E.G., Khomskii, D.I.: J. Low Temp. Phys. 10, 79–93 (1973)CrossRefADSGoogle Scholar
  19. 19.
    Gurevich, L.V., Larkin, A.I., Firsov, Y.A.: Sov. Phys. Sol. State 4, 131 (1962)Google Scholar
  20. 20.
    Collignon, C., et al: arXiv:1804.07067
  21. 21.
    Morel, P., Anderson, P.W.: Phys. Rev. 125, 1263 (1962)CrossRefADSGoogle Scholar
  22. 22.
    Takada, Y.: J. Phys. Soc. Jpn. 45, 786 (1978)CrossRefADSGoogle Scholar
  23. 23.
    Takada, Y.: J. Phys. Soc. Jpn. 49, 1267 (1980)CrossRefADSGoogle Scholar
  24. 24.
    Takada, Y.: J. Phys. Soc. Jpn. 49, 1713 (1980)CrossRefADSGoogle Scholar
  25. 25.
    Stucky, A., et al.: Sci. Rep. 6, 37582 (2016)CrossRefADSGoogle Scholar
  26. 26.
    Kresse, G., Hafner, J.: Phys. Rev. B 47, 558 (1993)CrossRefADSGoogle Scholar
  27. 27.
    Kresse, G., Furthmüller, J.: Phys. Rev. B 54, 11169 (1996)CrossRefADSGoogle Scholar
  28. 28.
    Perdew, J.P., et al.: Phys. Rev. Lett. 100, 136406 (2008)CrossRefADSGoogle Scholar
  29. 29.
    Perdew, J.P., et al.: Phys. Rev. Lett. 102, 039902 (2009)CrossRefADSGoogle Scholar
  30. 30.
    van Mechelen, J.L.M., et al.: Phys. Rev. Lett. 100, 226403 (2008)CrossRefADSGoogle Scholar
  31. 31.
    Kamarás, K., et al.: J. Appl. Phys. 78, 1235 (1995)CrossRefADSGoogle Scholar
  32. 32.
    Janotti, A., et al.: Appl. Phys. Lett. 100, 262104 (2012)CrossRefADSGoogle Scholar
  33. 33.
    Gervais, F., et al.: Phys. Rev. B 47, 8187 (1993)CrossRefADSGoogle Scholar
  34. 34.
    Ergönenc, Z., Kim, B., Liu, P., Kresse, G., Franchini, C.: Phys. Rev. Materials 2, 024601 (2018)CrossRefADSGoogle Scholar
  35. 35.
    Devreese, J.T.: arXiv:1611.06122
  36. 36.
    Devreese, J.T., et al.: Phys. Rev. B 81, 125119 (2010)CrossRefADSGoogle Scholar
  37. 37.
    Born, M., Kun, H.: Dynamical Theory of Crystal Lattices. Oxford University Press (1954)Google Scholar
  38. 38.
    Sanna, A., et al.: J. Phys. Soc. Jpn. 87, 041012 (2018)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Theorie van Kwantumsystemen en Complexe Systemen (TQC)Universiteit AntwerpenAntwerpenBelgium
  2. 2.Lyman Laboratory of PhysicsHarvard UniversityCambridgeUSA
  3. 3.Faculty of Physics, Computational Materials PhysicsUniversity of ViennaViennaAustria

Personalised recommendations