Advertisement

Non-resonant Microwave Absorption and Boundary Current Response of Ba0.34K0.64Fe2As2 Superconducting Single Crystals

  • T. C. Ramashitja
  • Hyma H. Vallabhapurapu
  • V. V. SrinivasuEmail author
Original Paper
  • 6 Downloads

Abstract

Boundary current response of Ba0.34K0.64Fe2As2 (BaK122) single crystals was probed by non-resonant microwave absorption (NRMA) as a function of 100-KHz modulation field at an intermediate temperature, namely, 25 K, which is 10 K below the actual Tc. The measurements were done for both field parallel and perpendicular to the iron arsenide plane configuration. A weak anisotropic effect is noted. However, it is observed that the boundary current response depends on the modulation field value and it increases as we increase the modulation field value from 1 to 9 G. Further, this boundary current response strongly depends on the microwave power. We have shown that these modulation field and microwave power dependence of the boundary current response of NRMA signals in BaK122 iron arsenide crystal can be qualitatively understood through the Dulcic model.

Keywords

Non resonant microwave absorption (NRMA) Ba0.34K0.64Fe2As2 (BaK122) single crystals Boundary current response Anisotropy Iron arsenide plane 

Notes

Acknowledgements

We acknowledge the high-quality BaK122 single crystals from Prof Yanwei Ma’s laboratory, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China.

Funding Information

We acknowledge a partial financial support by the UNISA-Research Chair for Superconductivity Technology, UNISA.

References

  1. 1.
    Rotter, M., Tegel, M., Johrendt, D.: Phys. Rev. Lett. 107006, 101 (2008)Google Scholar
  2. 2.
    Bhat, S.V., Ganguly, P., Ramakrishnan, T.V., Rao, C.N.R.: J. Phys. C. 20, L559 (1987)ADSCrossRefGoogle Scholar
  3. 3.
    Blazey, K.W., Muller, K.A., Bednorz, J.G., Berlinger, W., Amoretti, G., Buluggiu, E., Vera, A., Matacotta, F.C.: Phys. Rev. B. 36, 7241 (1987)ADSCrossRefGoogle Scholar
  4. 4.
    Kachaturyan, K., Weber, E.R., Tejedor, P., Stacy, A.M., Portis, A.M.: Phys. Rev. B. 36, 8309 (1987)ADSCrossRefGoogle Scholar
  5. 5.
    Rettori, C., Davidov, D., Blelaish, I., Feluer, I.: Magnetism and critical fields in the high-TcsuperconductorsYBa2Cu3O7−xSx(x=0, 1): An ESR study. Phys. Rev. B. 36, 4028–4031 (1987)ADSCrossRefGoogle Scholar
  6. 6.
    Durny, R., Hautala, J., Ducharme, S., Lee, B., Symko, O.G., Taylor, P.C., Zhang, D.J., Xu, J.A.: Phys. Rev. B. 36, 2361 (1987)ADSCrossRefGoogle Scholar
  7. 7.
    Stankowski, J., Kahol, P.K., Dalal, N.S., Moodera, J.S.: Possible Josephson oscillations spectra and electron paramagnetic resonance ofCu2+in Y-Ba-Cu-O. Phys. Rev. B. 36, 7126–7128 (1987)ADSCrossRefGoogle Scholar
  8. 8.
    Srinivasu, V.V., Pinto, R., Sasstry, M.D.: Magnetic shielding effects in Ag-doped and pure YBa2Cu3O7 − x thin films probed by non-resonant microwave absorption. Appl. Supercond. 4, 195–201 (1996)CrossRefGoogle Scholar
  9. 9.
    Rastogi, A., Srinivasu, V.V., Hedge, M.S., Bhat, S.V.: Surface barrier effects in non-resonant microwave absorption by thin superconducting films of YBa2Cu3O7−δ. Physica C. 234, 229–231 (1994)ADSCrossRefGoogle Scholar
  10. 10.
    Ramashitja, T.C., Srinivasu, V.V., Sankaran, V., Dong, C., Ma, Y.: Boundary Current Response in Ba 0 . 3 4 K 0 . 6 4 Fe2As2 Single Crystal Probed by Non-resonant Microwave Absorption. J. Supercond. Nov. Magn. 30, 3581–3585 (2017)CrossRefGoogle Scholar
  11. 11.
    Ramashitja T.C., Srinivasu V.V., Sankaran V., Raghu A.V: International Journal of Advance Research and Innovative Ideas in Education, ISSN 2395–4396 Vol-1, p. 176 (2016)Google Scholar
  12. 12.
    Srinivasu, V.V., Thomas, B., Hegde, M.S., Bhat, S.V.: Line shapes of field‐dependent nonresonant microwave and rf absorption in high‐Tcsuperconductors. J. Appl. Phys. 75, 4131–4136 (1994)ADSCrossRefGoogle Scholar
  13. 13.
    Bhat, S.V., Srinivasu, V.V., Kumar, N.: Temperature-dependent phase reversal of nonresonant microwave and rf absorption in high-Tcsuperconductors. Phys. Rev. B. 44, 10121–10125 (1991)ADSCrossRefGoogle Scholar
  14. 14.
    Braunisch, W., Knauf, N., Kataev, V., Neuhausen, S., Grutz, A., Kock, A., Roden, B., Khomskii, D., Wohlleben, D.: Paramagnetic Meissner effect in Bi high-temperature superconductors. Phys. Rev. Lett. 68, 1908–1911 (1992)ADSCrossRefGoogle Scholar
  15. 15.
    Khairullin, I.I., Khabibullaev, P.K., Yu, V., Sokolov, A.A., Zakhidov, T.R.: J. Phys. 23, 1107–1126 (1999)Google Scholar
  16. 16.
    Shaltiel, D., Krug von Nidda, H.A.: Nanosci. Nanotechnol Lett. 3(4), 575–578 (2011)CrossRefGoogle Scholar
  17. 17.
    Puri, M., Masiakowski, J., Bear, J., Kevan, L.: Effect of density, magnetic field modulation and magnetic field penetration depth on the microwave absorption properties of YBa2Cu3O7 –δsuperconductors. J. Chem. Soc. Faraday Trans. 87(22), 3687–3694 (1991)CrossRefGoogle Scholar
  18. 18.
    Wang, C., Gao, Z., Yao, C., Wang, L., Qi, Y., Wang, D., Zhang, X., Ma, Y.: Supercond. Sci. Technol. 24, 065002 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    Dulcic, A., Rakvin, B., Pozek, M.: Mechanisms of Field-Dependent Microwave Absorption in High-TcCeramic Superconductors. Europhysics. Lett. 10(6), 593–598 (1989)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • T. C. Ramashitja
    • 1
  • Hyma H. Vallabhapurapu
    • 2
  • V. V. Srinivasu
    • 1
    Email author
  1. 1.Department of PhysicsUniversity of South AfricaJohannesburgSouth Africa
  2. 2.School of Electrical Engineering and TelecommunicationsUniversity of New South WalesSydneyAustralia

Personalised recommendations