Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 32, Issue 10, pp 3109–3113 | Cite as

Thermal Spin-Valve Effect in Magnetic Multi-layered Nanowires

  • Nagarjuna Asam
  • Kazuto Yamanoi
  • Kohei Ohnishi
  • Takashi KimuraEmail author
Original Paper

Abstract

We have investigated the influence of the spin-dependent scattering on the heat transports in NiFe/Cu/NiFe and Co/Cu/Co tri-layered nanowires. The thermal conductivity and its spin dependence for the tri-layered wires have been evaluated by using an integrated nano-sized thermo couple. We find that the thermal spin-valve effect is always approximately 8 times larger than the electrical spin-valve effect, namely giant magnetoresistance effect. The numerical simulation with the experimental results enable us to estimate the thermal conductivity for the tri-layered wire and its spin dependence. Surprisingly, the spin dependence of the thermal conductivity for the Co/Cu/Co wire is as high as 8%, which is much larger than the electrical one. This indicates a high potential application of the thermal spin-valve effect.

Keywords

Spin-dependent transport Heat transport Seebeck effect 

Notes

Funding Information

This work was partially supported by Grant-in-Aid for Scientific Research on Innovative Area, “Nano Spin Conversion Science” (26103002), that for Scientific Research (A) (18H03866), that for Challenging Exploratory Research (17H06227), and JSPS Program for Fostering Globally Talented Researchers.

References

  1. 1.
    Baibich, M.N., Broto, J.M., Fert, A., Van Dau, F.N., Petroff, F., Eitenne, P., Creuzet, G., Friederich, A., Chazelas, J.: Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988).  https://doi.org/10.1103/PhysRevLett.61.2472 ADSCrossRefGoogle Scholar
  2. 2.
    Binasch, G., Gru̇nberg, P., Saurenbach, F., Zinn, W.: Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828–4830 (1989).  https://doi.org/10.1103/PhysRevB.39.4828 ADSCrossRefGoogle Scholar
  3. 3.
    Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., von Molnar, S., Roukes, M.L., Chtchelkanova, A.Y., Treger, D.M.: Science 294, 1488 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    Z̆utić, I., Fabian, J., Sarma, S.D.: Rev. Mod. Phys. 76, 323 (2004).  https://doi.org/10.1103/RevModPhys.76.323 ADSCrossRefGoogle Scholar
  5. 5.
    Maekawa, S.: Concepts in Spin Electronics. Oxford University Press, New York (2006)CrossRefGoogle Scholar
  6. 6.
    Maekawa, S., Takahashi, S. In: Maekawa, S., Valenzuela, S.O., Saitoh, E., Kimura, T. (eds.) Spin Curr. Oxford Univeristy Press (2012)Google Scholar
  7. 7.
    Bauer, G.E.W., Saitoh, E., van Wees, B.J.: Spin caloritronics. Nat. Mater. 11, 391–9 (2012).  https://doi.org/10.1038/nmat3301 ADSCrossRefGoogle Scholar
  8. 8.
    Uchida, K., Takahashi, S., Harii, K., Ieda, J., Koshibae, W., Ando, K., Maekawa, S., Saitoh, E.: Observation of the spin Seebeck effect. Nature 455, 778–81 (2008).  https://doi.org/10.1038/nature07321 ADSCrossRefGoogle Scholar
  9. 9.
    Johnson, M., Silsbee, R.H.: Thermodynamic analysis of interfacial transport and of the thermomagnetoelectric system. Phys. Rev. B 35, 4959–4972 (1987).  https://doi.org/10.1103/PhysRevB.35.4959 ADSCrossRefGoogle Scholar
  10. 10.
    Slachter, A., Bakker, F.L., Adam, J.-P., van Wees, B.J.: Thermally driven spin injection from a ferromagnet into a non-magnetic metal. Nat. Phys. 6, 879–882 (2010).  https://doi.org/10.1038/nphys1767 CrossRefGoogle Scholar
  11. 11.
    Hatami, M., Bauer, G.E.W., Zhang, Q., Kelly, P.J.: Thermoelectric effects in magnetic nanostructures. Phys. Rev. B 79, 174426 (2009).  https://doi.org/10.1103/PhysRevB.79.174426 ADSCrossRefGoogle Scholar
  12. 12.
    Flipse, J., Bakker, F.L., Slachter, A., Dejene, F.K., Van Wees, B.J.: Direct observation of the spin-dependent Peltier effect. Nat. Nanotechnol. 7, 166–168 (2012).  https://doi.org/10.1038/nnano.2012.2 ADSCrossRefGoogle Scholar
  13. 13.
    Callen, H.B.: The application of onsager’s reciprocal relations to thermoelectric, thermomagnetic, and galvanomagnetic effects. Phys. Rev. 73, 1349–1358 (1948).  https://doi.org/10.1103/PhysRev.73.1349 ADSCrossRefGoogle Scholar
  14. 14.
    Pu, Y., Johnston-Halperin, Y.E., Awschalom, D.D., Shi, J.: Anisotropic thermopower and planar Nernst effect in Ga1-xMnxAs ferromagnetic semiconductors. Phys. Rev. Lett. 97, 1–4 (2006).  https://doi.org/10.1103/PhysRevLett.97.036601 CrossRefGoogle Scholar
  15. 15.
    Pu, Y., Chiba, D., Matsukura, F., Ohno, H., Shi, J.: Mott relation for anomalous Hall and Nernst effects in Ga1-xMnxAs ferromagnetic semiconductors. Phys. Rev. Lett. 101, 1–4 (2008).  https://doi.org/10.1103/PhysRevLett.101.117208 CrossRefGoogle Scholar
  16. 16.
    Weischenberg, J., Freimuth, F., Blu̇gel, S., Mokrousov, Y.: Scattering-independent anomalous Nernst effect in ferromagnets. Phys. Rev. B - Condens. Matter Mater. Phys. 87, 1–5 (2013).  https://doi.org/10.1103/PhysRevB.87.060406 CrossRefGoogle Scholar
  17. 17.
    Sato, H., Aoki, Y., Kobayashi, Y., Yamamoto, H., Shinjo, T.: Giant magnetic field effect on thermal conductivity of magnetic multilayers, Cu/Co/Cu/Ni(Fe). J. Phys. Soc. Japan 62, 431–434 (1993).  https://doi.org/10.1143/JPSJ.62.431 ADSCrossRefGoogle Scholar
  18. 18.
    Jeong Moneck, T., Zhu, M.J.: Giant magneto-thermal conductivity in magnetic multilayers. IEEE Trans. Magn. 48, 3031–3034 (2012).  https://doi.org/10.1109/TMAG.2012.2201709 ADSCrossRefGoogle Scholar
  19. 19.
    Heikkilȧ, T.T., Hatami, M., Bauer, G.E.W.: Spin heat accumulation and its relaxation in spin valves. Phys. Rev. B - Condens Matter Mater. Phys. 81, 1–4 (2010).  https://doi.org/10.1103/PhysRevB.81.100408 CrossRefGoogle Scholar
  20. 20.
    Parkin, S.S.P.: Phys. Rev. Lett. 71(10), 1641 (1993).  https://doi.org/10.1103/PhysRevLett.71.1641 ADSCrossRefGoogle Scholar
  21. 21.
    Bakker, F.L., Flipse, J., Van Wees, B.J.: Nanoscale temperature sensing using the Seebeck effect. J. Appl. Phys. 111, 084306 (2012).  https://doi.org/10.1063/1.3703675 ADSCrossRefGoogle Scholar
  22. 22.
    Bakker, F.L., Slachter, A., Adam, J.-P., Van Wees, B.J.: Phys. Rev. Lett. 105, 136601 (2010).  https://doi.org/10.1103/PhysRevLett.105.136601 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Nagarjuna Asam
    • 1
  • Kazuto Yamanoi
    • 1
    • 2
  • Kohei Ohnishi
    • 1
    • 3
  • Takashi Kimura
    • 1
    • 3
    Email author
  1. 1.Department of PhysicsKyushu UniversityFukuokaJapan
  2. 2.London Centre for NanotechnologyUniversity College LondonLondonUK
  3. 3.Center for Quantum Nano-Spin SciencesKyushu UniversityFukuokaJapan

Personalised recommendations