Structural and Electrical Dependence in Zn-Doped Li-Ferrite Nanostructures

  • M. Anis-ur-RehmanEmail author
  • Waqar Mahmood
  • H. Ghazanfar
  • M. A. A. Khan
  • A. Haq
Original Paper


Zinc-doped lithium ferrite nanoparticles with general formula Li0.46Zn0.04Fe2.5O4 were prepared by Co-precipitation method and their thin films were grown by spin coating method. X-ray diffraction (XRD) confirmed the spinel structure of the synthesized samples. Fine morphology of the films was obtained by controlling the parameters. AC electrical properties including dielectric constant (έ), dielectric loss tangent (tanδ), AC electrical conductivity (σac), and impedance (Z) were studied as a function of frequency at different temperatures and at 1 MHz frequency in a temperature range of 40–500 °C. Dielectric constant, dielectric loss tangent, and ac electrical conductivity showed the decreasing trend with increase in temperature while opposite trend was observed for impedance. Zinc-doped Li-ferrite has better absorption properties in the studied frequency and temperature range as compared to that of Li-ferrites.


Absorbers Ferrites Dielectrics Thin films 



Fatima Jinnah Women University is acknowledged for providing excellent research environment to one of the authors (Dr. Waqar Mahmood).

Funding Information

Higher Education Commission, Pakistan, financially supported the study.


  1. 1.
    Cao, G.: Nanostructures & Nanomaterials: Synthesis, Properties & Applications. Imperial College Press, U.K (2004)CrossRefGoogle Scholar
  2. 2.
    Spaldin, N.A.: Magnetic Materials. Cambridge University Press, U.K. (2011)Google Scholar
  3. 3.
    Tebble, R.S., Craik, D.J.: Magnetic Materials. John Wiley & Sons, U.S.A. (1969)Google Scholar
  4. 4.
    Ullah, Z., Atiq, S., Naseem, S.: Influence of Pb doping on structural, electrical and magnetic properties of Sr-hexaferrites. J. Alloy Compd. 555, 263–267 (2013)CrossRefGoogle Scholar
  5. 5.
    Pawar, R.A., Desai, S.S., Tamboli, Q.Y., Shirsath, S.E., Patange, S.M.: Ce 3+ incorporated structural and magnetic properties of M type barium hexaferrites. J. Magn. Magn. Mater. 378, 59–63 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    Naseri, M.G. Saion E.B. Crystalization in Spinel Ferrite Nanoparticles, Advances in Crystallization Processes, Mastai Y., In techOpen, (2012).
  7. 7.
    Hessien, M.M.: J. Alloy Compd. 591, 174–180 (2014)CrossRefGoogle Scholar
  8. 8.
    Srivastava, M., Singh, J., Mishra, R.K., Singh, M.K., Ojha, A.K., Yashpal, M., Sudhanshu, S.: Novel conducting lithium ferrite/chitosan nanocomposite: synthesis, characterization, magnetic and dielectric properties. Curr. Appl. Phys. 14, 980–990 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    Sutradhar, S., Pati, S., Acharya, S., Das, S., Das, D., Chakrabarti, P.K.: Sol–gel derived nanoparticles of Zn substituted lithium ferrite (Li0.32Zn0.36Fe2.32O4): magnetic and Mössbauer effect measurements and their theoretical analysis. J. Magn. Magn. Mater. 324, 1317–1325 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    Widatallah, H.M., Moore, E.A., Babo, A.A., Barwani, M.S.A., Elzain, M.: Atomistic simulation and ab initio study of the defect structure of spinel-related Li0.5−0.5xMgxFe2.5−0.5xO4. Mater. Res. Bull. 47, 3995–4000 (2012)CrossRefGoogle Scholar
  11. 11.
    Madani, S.S., Mahmoudzadeh, G., Abedini, S.: Khorrami. J. Ceram. Process. Res. 13, 123–126 (2012)Google Scholar
  12. 12.
    Patil, R.P., Hankare, P.P., Garadkar, K.M., Sasikala, R.: Effect of sintering temperature on structural, magnetic properties of lithium chromium ferrite. J. Alloys Compd. 523, 66–71 (2012)CrossRefGoogle Scholar
  13. 13.
    Roy, M.K., Verma, H.C.: Magnetization anomalies of nanosize zinc ferrite particles prepared using electrodeposition. J. Magn. Magn. Mater. 306, 98–102 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    Upadhyay, C., Verma, H.C., Sathe, V., Pimpale, A.V., Mag, J.: Mag. Mater. 312, 271–279 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    Hilli, M.F.A., Li, S., Kassim, K.S., Mag, J.: Mag. Mater. 324, 873–879 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    Jiles, D.C.: Introduction to Magnetism and Magnetic Materials. Taylor & Francis Group, U.S.A. (1998)Google Scholar
  17. 17.
    Kulkarni, S.A.: Nanotechnology, Principles and Practices. Springer Science, U.S.A. (2011)Google Scholar
  18. 18.
    Manikandan, V., Vanitha, A., Kumar, E.R., Chandrasekaran, J.: Effect of sintering temperature on Structural and Dielectric properties of Sn substituted CuFe2O4 Nanoparticles. J. Magn. Magn. Mater. 423, 250–255 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • M. Anis-ur-Rehman
    • 1
    Email author
  • Waqar Mahmood
    • 2
  • H. Ghazanfar
    • 1
  • M. A. A. Khan
    • 1
  • A. Haq
    • 1
    • 3
  1. 1.Applied Thermal Physics Laboratory, Department of PhysicsCOMSATS University IslamabadIslamabadPakistan
  2. 2.Material Synthesis & Characterizations (MSC) Laboratory, Department of PhysicsFatima Jinnah Women University (FJWU)The Mall RawalpindiPakistan
  3. 3.Department of PhysicsGovernment Postgraduate College Satellite TownRawalpindiPakistan

Personalised recommendations