Advertisement

The Blocking Temperature of an Amorphous Alternate A and B Layers Cylindrical Nanowire

  • N. Zaim
  • A. ZaimEmail author
  • M. Kerouad
Original Paper
  • 13 Downloads

Abstract

The blocking temperature of an amorphous cylindrical nanowire of length L and radius R is studied within the framework of Monte Carlo simulation based on Metropolis algorithm. The nanowire is formed by alternate layers of atoms A and B. The interlayer coupling JAB is ferromagnetic. The effects of the exchange couplings JB and JAB, the plane anisotropy Dxy, and the amorphization α on the blocking temperature of the system are investigated. We found that the blocking temperature increases with increasing the value of the exchange couplings JB and JAB and decreases with increasing the plane anisotropy Dxy and the degree of the amorphization α.

Notes

Acknowledgements

This work has been initiated with the support of URAC: 08 and the projet PPR: (MESRSFC-CNRST).

References

  1. 1.
    Zaim, N., Zaim, A., Kerouad, M.: Phys. Lett. A 380, 3404 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    Zaim, N., Zaim, A., Kerouad, M.: Superlattices Microstruct. 100, 490 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    Zaim, N., Zaim, A., Kerouad, M.: J. Magn. Magn. Mater. 424, 443 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    Gao, C., Li, W., Morimoto, H., Nagaoka, Y., Maekawa, T.: J. Phys. Chem. B 110, 7213 (2006)CrossRefGoogle Scholar
  5. 5.
    Bader, S.D.: Rev. Mod. Phys. 78, 1 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    Mahdi, J.M., Nsofor, E.C.: Int. J. Heat Mass Trans. 109, 417 (2017)CrossRefGoogle Scholar
  7. 7.
    Dutz, S., Hergt, R.: Nanotechnology 25, 452001 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    Corti, M., Lascialfari, A., Micotti, E., Castellano, A., Donativi, M., Quarta, A., Cozzoli, P.D., Manna, L., Pellegrino, T., Sangregorio, C.: J. Magn. Magn. Mater. 320, e320–e323 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    Mamiya, H., Ohnuma, M., Nakatani, I., Furubayashim, T.: IEEE Trans. Magn. 41, 3394 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    Serantes, D., Baldomir, D., Pereiro, M., Hoppe, C.E., Rivadulla, F., Rivas, J.: Phys. Rev. B 82, 134433–1 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Tadic, M., Nikolic, D., Panjan, M., Blake, G.R.: J. Alloys Compd. 647, 1061 (2015)CrossRefGoogle Scholar
  12. 12.
    He, L.: Solid State Commun. 150, 743 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Seehra, M.S., Pisane, K.L.: J. Phys. Chem. Solids 93, 79 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    Eltabey, M.M., Massoud, A.M., Radu, C.: Mater. Chem. Phys. 186, 505 (2017)CrossRefGoogle Scholar
  15. 15.
    Balogh, J., Kaptás, D., Kiss, L.F., Dézsi, I., Nakanishi, A., Devlin, E., Vasilakaki, M., Margaris, G., Trohidou, K.N.: J. Magn. Magn. Mater. 401, 386 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    Dormann, J.L., Fiorani, D., Tronc, E.: Adv. Chem. Phys. 98, 283–494 (1997)Google Scholar
  17. 17.
    Arteaga-Cardona, F., Santillán-Urquiza, E., Pal, U., Méndoza-Álvarez, M.E., Torres-Duarte, C., Cherr, G.N., de la Presa, P., Méndez-Rojas, M.Á.: J. Magn. Magn. Mater. 441, 417 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    Balaev, D.A., Semenova, S.V., Dubrovskiya, A.A., Yakushkinc, S.S., Kirillov, V.L., Martyanov, O.N.: J. Magn. Magn. Mater. 440, 199 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    Shim, H., Dutta, P., Seehra, M.S., Bonevich, J.: Solid State Commun. 145, 192 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    Yamamoto, Y., Tanaka, H., Kawai, T.: J. Magn. Magn. Mater. 261, 263 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    Hu, Y., Du, A.: J. Magn. Magn. Mater. 322, 844 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    Russier, V.: J. Magn. Magn. Mater. 409, 50 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    Woińska, M., Szczytko, J., Majhofer, A., Gosk, J., Dziatkowski, K., Twardowski, A.: Phys. Rev. B 88, 144421 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    Soler, M., Paterno, L., Sinnecker, J., Wen, J.G., Sinnecker, E., Neumann, R., Bahiana, M., Novak, M., Morais, P.: J. Nanoparticle Res. 14, 653 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    Neumann, R., Bahiana, M., Paterno, L., Soler, M., Sinnecker, J., Wen, J., Morais, P.: J. Magn. Magn. Mater. 347, 26 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    Wang, W., Bi, J.-l., Liu, R.-j., Chen, X., Liu, J.-p.: Superlattice. Microst. 98, 433 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    Lv, D., Wang, F., Liu, R.-j., Xue, Q., Li, S.-x.: J. Alloys Compd. 701, 935 (2017)CrossRefGoogle Scholar
  28. 28.
    Wang, W., Liu, Y., Gao, Z.-y., Zao, X.-r, Yang, Y., Yang, S.: Physica E 101, 110 (2018)ADSCrossRefGoogle Scholar
  29. 29.
    Wang, W., Peng, Z., Lin, S.-s., Li, Q., Lv, D., Yang, S.: Superlattice. Microst. 113, 178 (2018)ADSCrossRefGoogle Scholar
  30. 30.
    Yang, Y., Wang, W., Lv, D., Liu, J.-p., Gao, Z.-y., Wang, Z.-y: . J. Phys. Chem. Solids 120, 109 (2018)ADSCrossRefGoogle Scholar
  31. 31.
    Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: J. Chem. Phys. 21, 1087 (1953)ADSCrossRefGoogle Scholar
  32. 32.
    Newman, M.E.J., Barkema, G.T.: Monte Carlo Methods in Statistical Physics. Clarendon Press, Oxford (1999)zbMATHGoogle Scholar
  33. 33.
    Peng, Z., Wang, W., Lv, D., Liu, R.J., Li, Q.: Superlattices Microstruct. 109, 675 (2017)ADSCrossRefGoogle Scholar
  34. 34.
    Jiang, W., Wang, Y.N., Guo, A.B., Yang, Y.Y., Shi, K.L.: Carbon 110, 41 (2016)CrossRefGoogle Scholar
  35. 35.
    Wang, W., Li, Q., Lv, D., Liu, R.J., Peng, Z., Yang, S.: Carbon 120, 313 (2017)CrossRefGoogle Scholar
  36. 36.
    Luo, X.H., Wang, W., Chen, D.D., Xu, S.Y.: J. Physica B: Condens. Matter 491, 51 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    Jiang, W., Yang, Y.-Y., Guo, A.-B.: Study on magnetic properties of a nano-graphene bilayer. Carbon 95, 190 (2015)CrossRefGoogle Scholar
  38. 38.
    Trohidou, K., Vasilakaki, M.: Monte Carlo Studies of Magnetic Nanoparticles, Applications of Monte Carlo Method in Science and Engineering, InTech (2011)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire Physique des Matériaux et Modélisation des Systèmes (LP2MS), Unité Associée au CNRST-URAC: 08, Faculty of SciencesUniversity Moulay IsmailMeknesMorocco

Personalised recommendations