Advertisement

Effect of Ca Doping on the Structure and Magnetic and Electronic Properties of La1 − xCaxCr0.8Cu0.2O3 (x = 0~0.3)

  • Zhiwei Wen
  • Yajing Cui
  • Yongliang ChenEmail author
  • Yong ZhaoEmail author
Original Paper
  • 24 Downloads

Abstract

A series of La1 − xCaxCr0.8Cu0.2O3 samples were successfully prepared by sol-gel method, and their crystal structures were refined by using X-ray powder diffraction data. All samples had orthorhombic structure with a space group Pbnm. Two magnetic transitions were observed for all of samples, and the paramagnetism-antiferromagnetism transition temperature decreased, and the antiferromagnetism-ferromagnetism transition temperature increased with increasing Ca content. Moreover, Cu and Ca co-doping improved conductivity and active energy.

Keywords

Lanthanum chromite oxides Magnetic proprieties Electronic properties Sol-gel method 

Notes

Acknowledgements

Yongliang Chen gratefully acknowledges Foundation of Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle, Ministry of Education.

Funding information

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 11104224, 11004162) and the Research Fund for the Doctoral Program of Higher Education of China (20110184120029).

Supplementary material

10948_2019_5003_MOESM1_ESM.pdf (5.8 mb)
ESM 1 (PDF 5934 kb)

References

  1. 1.
    Dai, Z., Lee, C.-S., Kim, B.-Y., Kwak, C.-H., Yoon, J.-W., Jeong, H.-M., Lee, J.-H.: Honeycomb-like periodic porous LaFeO3 thin film chemiresistors with enhanced gas-sensing performances. ACS Appl. Mater. Interfaces. 6, 16217–16226 (2014)CrossRefGoogle Scholar
  2. 2.
    Kanhere, P., Nisar, J., Tang, Y., Pathak, B., Ahuja, R., Zheng, J., Chen, Z.: Electronic structure, optical properties, and photocatalytic activities of LaFeO3-NaTaO3 solid solution. J. Phys. Chem. C. 116, 22767–22773 (2012)CrossRefGoogle Scholar
  3. 3.
    Wang, Y., Lv, Z., Shan, H., Chen, J., Zhou, Y., Zhou, L., Chen, X., Roy, V.A.L., Wang, Z., Xu, Z., Zeng, Y., Han, S.: Synergies of electrochemical metallization and valance change in all-inorganic perovskite quantum dots for resistive switching. Adv. Mater. 30, 1800327 (2018)CrossRefGoogle Scholar
  4. 4.
    Wang, J., Song, C., He, Z., Mai, C., Xie, G., Mu, L., Cun, Y., Li, J., Wang, J., Peng, J., Cao, Y.: All-solution-processed pure formamidinium-based perovskite light-emitting diodes. Adv. Mater. 30, 1804137 (2018)CrossRefGoogle Scholar
  5. 5.
    Han, Z., Liu, X., Li, X., Chen, Y., Liu, G., Li, J.: Ca2+-doped LaCrO3: a novel energy-saving material with high infrared emissivity. J. Am. Ceram. Soc. 97, 2705–2708 (2014)CrossRefGoogle Scholar
  6. 6.
    Zhang, B., Zhao, Q., Chang, A., Wu, Y., Li, H.: Spark plasma sintering of MgAl2O4-LaCr0.5Mn0.5O3 composite thermistor ceramics and a comparison investigation with conventional sintering. J. Alloys. Compd. 675, 381–386 (2016)CrossRefGoogle Scholar
  7. 7.
    Meadowcroft, D.B.: Electronically-conducting refractory ceramic electrodes for open cycle mhd power generation. Energy Convers. 8, 185–190 (1968)CrossRefGoogle Scholar
  8. 8.
    Akashia, T., Maruyamab, T., Gotoa, T.: Transport of lanthanum ion and hole in LaCrO3 determined by electrical conductivity measurements. Solid State Ionics. 164, 177–183 (2003)CrossRefGoogle Scholar
  9. 9.
    Sakai, N., Yokokawa, H., Horita, T., Yamaji, K.: Lanthanum chromite-based interconnects as key materials for SOFC stack development. Int. J. Appl. Ceram. Technol. 1, 23–30 (2004)CrossRefGoogle Scholar
  10. 10.
    Lee, G.-Y., Song, R.-H., Kim, J.-H., Peck, D.-H., Lim, T.-H., Shul, Y.-G., Shin, D.-R.: Properties of cu, Ni, and V doped-LaCrO3 interconnect materials prepared by Pechini, ultrasonic spray pyrolysis and glycine nitrate processes for SOFC. J. Electroceram. 17, 723–727 (2006)CrossRefGoogle Scholar
  11. 11.
    Chen, M., Zhang, H., Liu, T., Jiang, H., Chang, A.: Preparation structure and electrical properties of La1−xBaxCrO3 NTC ceramics. J. Mater. Sci. Mater. Electron. 28, 18873–18878 (2017)CrossRefGoogle Scholar
  12. 12.
    Zhou, J.-S., Alonso, J.A., Pomjakushin, V., Goodenough, J.B., Ren, Y., Yan, J.-Q., Cheng, J.-G.: Intrinsic structural distortion and superexchange interaction in the orthorhombic rare-earth perovskites RCrO3. Phys. Rev. B. 81, 214115 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Prado-Gonjal, J., Arévalo-López, Á.M., Morán, E.: Microwave-assisted synthesis: a fast and efficient route to produce LaMO3 (M = Al, Cr, Mn, Fe, Co) perovskite materials. Mater. Res. Bull. 46, 222–230 (2011)CrossRefGoogle Scholar
  14. 14.
    Silva Jr., R.S., Barrozo, P., Moreno, N.O., Aguiar, J.A.: Structural and magnetic properties of LaCrO3 half-doped with Al. Ceram. Int. 42, 14499–14504 (2016)CrossRefGoogle Scholar
  15. 15.
    Istomi, S.Y., Kurlov, A.V., Kazakov, S.M., Antipov, E.V.: Crystal structure and thermal expansion of LaCr1-xMgxO3, 0 < x ≤ 0.25. Mater. Res. Bull. 47, 1176–1180 (2012)CrossRefGoogle Scholar
  16. 16.
    Fu, Y.-P., Wang, H.-C.: Preparation and characterization of ceramic interconnect La0.8Ca0.2Cr0.9M0.1O3-σ (M = Al, Co, Cu, Fe) for IT-SOFCs. Int. J. Hydrog. Energy. 36, 747–754 (2011)CrossRefGoogle Scholar
  17. 17.
    Adaika, K., Omari, M.: Synthesis and physicochemical characterization of LaCr1-xCuxO3. J. Sol-Gel. Sci. Technol. 75, 298–304 (2015)CrossRefGoogle Scholar
  18. 18.
    Zhao, T.-S., Xianyu, W.X., Li, B.H., Qain, Z.N.: Magnetic properties and low-field magnetoresistance of La0.7Sr0.3Mn0.9M0.1O3 compounds (M = Al, Cr, Mn, Fe, Co, Ni, Cu, and Ga). J. Alloys. Compd. 459, 29–34 (2008)CrossRefGoogle Scholar
  19. 19.
    Qasim, I., Blanchard, P.E.R., Liu, S., Kennedy, B.J.: Impact of cu doping on the structure and electronic properties of LaCr1−yCuyO3. Inorg. Chem. 53, 2240–2247 (2014)CrossRefGoogle Scholar
  20. 20.
    Neumeier, J.J., Terashita, H.: Magnetic, thermal, and electrical properties of La1−xCaxCrO3(0⩽x⩽0.5). Phys. Rev. B. 70, 214435 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    Yuan, S., Li, Z., Zeng, X., Zhang, G., Tu, F., Peng, G., Liu, J., Jiang, Y., Yang, Y., Tang, C.: Effect of Cu doping at the Mn site on the transport and magnetic behaviors of La2/3Ca1/3MnO3. Eur. Phys. J. B. 20, 177 (2001)ADSGoogle Scholar
  22. 22.
    Aliotta, C., Liotta, L.F., Deganello, F., La Parola, V., Martorana, A.: Direct methane oxidation on La1−xSrxCr1−yFeyO3−σ perovskite-type oxides as potential anode for intermediate temperature solid oxide fuel cells. Appl. Catal. B Environ. 180, 424–433 (2016)CrossRefGoogle Scholar
  23. 23.
    Zhang, G., Xiong, H., Zheng, J., Jia, Y., Xuan, Y., Mizutani, N.: Relative content of the Cr4+ ion and electrical conductivity of La0.75Ca0.25Cr0.75Fe0.25O3. Mater. Chem. Phys. 71, 84–89 (2001)CrossRefGoogle Scholar
  24. 24.
    Wang, R., Mao, Y., Zhang, C., Xiao, H., Xu, L., Xia, Z., Yang, C.: Structure and magnetic properties in mixed valent LaCr0.7Cu0.3O3 ceramics. Ceram. Int. 44, 339–342 (2018)CrossRefGoogle Scholar
  25. 25.
    Komarek, A.C., Streltsov, S.V., Isobe, M., Möller, T., Hoelzel, M., Senyshyn, A., Trots, D., Fernández-Díaz, M.T., Hansen, T., Gotou, H., Yagi, T., Ueda, Y., Anisimov, V.I., Grüninger, M., Khomskii, D.I., Braden, M.: CaCrO3: an anomalous antiferromagnetic metallic oxide. Phys. Rev. Lett. 101, 167204 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle, Ministry of Education, and Superconductivity and New Energy R&D CenterSouthwest Jiaotong UniversityChengduChina
  2. 2.School of Physical Science and TechnologySouthwest Jiaotong UniversityChengduChina
  3. 3.College of Physics and EnergyFujian Normal UniversityFuzhouChina

Personalised recommendations