Magnetic Properties and Electronic Structure of Ni/C Multilayer Films
- 19 Downloads
Abstract
The magnetic properties of Ni/C multilayers were investigated using vibrating sample magnetometer and ferromagnetic resonance (FMR). Spin wave resonances were seen in FMR and the spin wave was found to be sustained through whole layers. The interlayer coupling constant was small pointing out a weak exchange coupling between Ni films through C spacers. The FMR linewidth, in parallel geometry, of the uniform mode decreases with the increase in Ni thickness from 30 to 300 Å which can be understood by considering interfacial effects. The magnetization decreases with decreasing Ni thickness due to the structural imperfections associated with the presence of Ni1−xCx alloys at the interface. Density functional theory (DFT) has been performed to shed light on the decrease in magnetic moment at the interfaces.
Keywords
Ni/C multilayers Ferromagnetic resonance Spin waves Interlayer coupling DFTNotes
References
- 1.Bakhshayeshi, A., Mendi, R.T., Khadiv, F.P.: J Supercond Magn. 30, 2871 (2017)CrossRefGoogle Scholar
- 2.Agazzi, L., Bennett, S., Berry, F.J., Carbucicchio, M., Rateo, M., Ruggiero, G., Turilli, G.J.: Appl. Phys. 92, 3231 (2002)CrossRefGoogle Scholar
- 3.Charkaoui, A., Saadi, A., Moubah, R., Lassri, M., Bouhbou, M., Bakkari, K., Mliki, N., Hassini, A., Lassri, H.: J. Supercond. Nov. Magn. 1–6 (2018)Google Scholar
- 4.Kuru, H., Kockar, H., Alper, M.: J. Magn. Magn. Mater. 444, 132 (2017)ADSCrossRefGoogle Scholar
- 5.Tekgül, A., Alper, M., Kockar, H.: J. Magn. Magn. Mater. 421, 472 (2017)ADSCrossRefGoogle Scholar
- 6.Antarnusa, G., Swastika, P.E., Suharyadi, E.: JPCS. 1011, 012061 (2018)Google Scholar
- 7.Vilela, G.L.S., Monsalve, J.G., Rodrigues, A.R., Azevedo, A., Machado, F.L.A.: J. Appl. Phys. 121, 124501 (2017)ADSCrossRefGoogle Scholar
- 8.Wang, X., Gao, Y., Chen, H., Chen, Y., Liang, X., Lin, W., Sun, N.X.: Phys. Lett. A. 382, 1505 (2018)ADSCrossRefGoogle Scholar
- 9.Liu, X., Li, X., Bac, S. K., Zhang, S., Dong, S., Lee, S., Furdyna, J. K.: AIP Adv. 8, 056402 (2018)Google Scholar
- 10.Modak, R., Samantaray, B., Mandal, P., Srinivasu, V.V., Srinivasan, A.: AIP Conf. Proc. 1953, 120006 (2018)CrossRefGoogle Scholar
- 11.Yamkane, Z., Lassri, H., Omari, N., Hlil, E.K.: J. Supercond. Nov. Magn. 25, 1489 (2012)CrossRefGoogle Scholar
- 12.Salhi, H., Chafai, K., Msieh, O., Lassri, H., Benkirane, K., Abid, M., Bessais, L., Hlil, E.K.: J. Supercond. Nov. Magn. 24, 1375 (2011)CrossRefGoogle Scholar
- 13.Blaha, P., Schwarz, K., Sorantin, P., Trickey, S.B.: Comput. Phys. Commun. 59, 399 (1990)ADSCrossRefGoogle Scholar
- 14.Gao, S.: Comput. Phys. Commun. 153, 190 (2003)ADSCrossRefGoogle Scholar
- 15.Tran, F., Blaha, P.: Phys. Rev. B. 83, 235118 (2011)ADSCrossRefGoogle Scholar
- 16.Abid, M., Ouahmane, H., Lassri, H., Khmou, A., Krishnan, R.: J. Magn. Magn. Mater. 202, 335 (1999)ADSCrossRefGoogle Scholar
- 17.Morales, M.A., Lassri, H., Biondo, A., Rossi, A., MBaggio-Saitovitch, E.: J. Magn. Magn. Mater. 256(93), (2013)Google Scholar
- 18.Puszkarski, H.: Prog. Surf. Sci. 9, 191 (1979)ADSCrossRefGoogle Scholar
- 19.van Stapele, R.P., Greidanus, F.J.A.M., Smits, J.W.: J. Appl. Phys. 57, 1282 (1985)ADSCrossRefGoogle Scholar
- 20.Wang, Z.J., Mitsudo, S., Watanabe, K., Awaji, S., Saito, K., Fujimori, H., Motokawa, M.: J. Magn. Magn. Mater. 17, 127 (1997)ADSCrossRefGoogle Scholar
- 21.Hurdequint, H.: J. Magn. Magn. Mater. 310, 2061 (2007)ADSCrossRefGoogle Scholar
- 22.Gibson, J.S., Uddin, J., Cundari, T.R., Bodiford, N.K., Wilson, A.K.: J. Phys. Condens. Matter. 22, 445503 (2010)ADSCrossRefGoogle Scholar
- 23.Yang, J., Xiao, Z., Wen, Z., Li, Q., Yang, F.: Comput. Condens. Matter. 1, 51–57 (2014)Google Scholar
- 24.Kelling, J., Zahn, P., Schuster, J., Gemming, S.: Phys. Rev. B 95, 024113 (2017)Google Scholar
- 25.Roy, A., Mukherjee, S., Gupta, R., Auluck, S., Prasad, R., Garg, A.: J. Phys. Condens. Matter. 23, 325902 (2011)CrossRefGoogle Scholar
- 26.Rahman, G., Jan, H.U.: J. Supercond. Nov. Magn. 31, 405 (2018)CrossRefGoogle Scholar