Advertisement

A Tunable Optimized Low-Temperature Sensor Based on the Hybrid Photonic Crystals (F4/Bg5/F4) and (Bg5/F4/Bg5)

  • Jihene Zaghdoudi
  • Zina BaraketEmail author
  • Mounir Kanzari
Original Paper
  • 26 Downloads

Abstract

In this paper, we present a novel type of low-temperature sensor based precisely on the symmetrical hybrid photonic crystals. Thanks to the two-fluid model and the transfer matrix method, we study the temperature sensitivity of the hybrid multilayers (F4/Bg5/F4) and (Bg5/F4/Bg5) where F4 represents the fourth iteration of the quasi-periodic Fibonacci sequence and Bg5 designates the multilayer Bragg mirror (HLS)5. We assume that the layers H, L, and S indicate precisely the dielectric materials of Bi4Ge3O12, SiO2, and YaBO2CuO7 superconductor one. The analysis of the transmittance spectra shows that the hybrid photonic crystal is more sensitive to the temperature than the periodic one. A higher sensibility value is reached due to the possible combination of the periodic and quasi-periodic sequences. Our investigation reveals that the photonic crystal (F4/Bg5/F4) is more sensitive to low temperature compared to (Bg5/F4/Bg5). The sensitivity is significantly affected by the position of quasi-periodic sequences. The sensitivity of such photonic crystals can be adequately controlled by applying a symmetrical chirping. The designed structures pave the way toward the achievement of a potential low-temperature sensor.

Keywords

Photonic crystals Low-temperature sensor Fibonacci Chirped TMM Optimization Tunable 

Notes

References

  1. 1.
    Yablonovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)ADSCrossRefGoogle Scholar
  2. 2.
    Giannopoulos, D., Villeneuve, P.R., Fan, S.: Photonic crystals: putting a new twist on light. Nature. 386, 143–149 (1997)ADSCrossRefGoogle Scholar
  3. 3.
    Yuan, K., Zheng, X., Li, C.-L., She, W.L.: Design of omnidirectional and multiple channeled filters using one-dimensional photonic crystals containing a defect layer with a negative refractive index. Phys. Rev. E. 71(066604), 1–5 (2005)Google Scholar
  4. 4.
    Srivastava, S.K., Ojha, S.P.: Operating characteristics of an optical filter using metallic photonic band gap materials. Microw. Opt. Technol. Lett. 35(1), 68–71 (2002)CrossRefGoogle Scholar
  5. 5.
    Weiss, S.M., Haurylau, M., Fauchet, P.M.: Tunable photonic bandgap structures for optical interconnects. Opt. Mater. 27, 740–745 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    Aghajamali, A., Zare, A., Wu, C.J.: Analysis of defect mode in a one-dimensional symmetric double-negative photonic crystal containing magnetized cold plasma defect. Appl. Opt. 54(29), 8602–8606 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    Chang, Y.H., Jhu, Y.Y., Wu, C.-J.: Temperature dependence of defect mode in a defective photonic crystal. Opt. Commun. 285(6), 1501–1504 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    Srivastava, S.: Photonic band gaps extension in one dimensional metallo-organic multilayer photonic structure: reflectance spectra of Ag/N, N’-bis-(1-naphthyl)-N, N’diphenyl-1; 1biphenyl-4; 4diamine. SOP Trans. Theo. Phys. 1, 26–46 (2014)CrossRefGoogle Scholar
  9. 9.
    Kong, X.K., Yang, H.W., Li, S.B.: Anomalous dispersion in one-dimensional plasma photonic crystals. Optik. 121(20), 1873–1876 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    Baba, T.: Slow light in photonic crystals. Nat. Photonics. 2, 465–473 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    Porras-Montenegro, N., Duque, C.A.: Temperature and hydrostatic pressure effects on the photonic band structure of a 2D honeycomb lattice. Phys. E. 42, 1865–1869 (2010)CrossRefGoogle Scholar
  12. 12.
    Kumar, V., Suthar, B., Kumar, A., Singh, K., Bhargava, A.: The effect of temperature and angle of incidence on photonic band gap in a dispersive Si-based one dimensional photonic crystal. Physica B. 416, 106–109 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    Xu, C., Hu, X., Li, Y., Liu, X., Fu, R., Zi, J.: Semiconductor-based tunable photonic crystals by means of an external magnetic field. Phys. Rev. B. 68, 193201 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    Alonso Lopez Medina, J., Esther Gonzalez Reyes, L., Porras-Montenegro, N., Zambrano, G.: Band structure dependence on the external perpendicular magnetic field and zn concentration of photonic crystals made of CoxZnxFe2O4 nanoparticles. IEEE Trans. Magn. 52 (2016)Google Scholar
  15. 15.
    Kumar Awasthi, S., Panda, R., Kumar Chauhan, P., Shiveshwari, L.: Multichannel tunable omnidirectional photonic band gaps of 1D ternary photonic crystal containing magnetized cold plasma. Phys. Plasmas. 25, 052103 (2018)ADSCrossRefGoogle Scholar
  16. 16.
    Prasad, S., Sharma, Y., Shukla, S., Singh, V.: Properties of density of modes in one dimensional magnetized plasma photonic crystals. Phys. Plasmas. 23, 032123 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    Azarshab, H., Gharaati, A.: A multichannel filter based on ternary nano metallo-dielectric photonic crystal with Thue-Morse defect layer structure. Microelectron. Eng. 198, 93–97 (2018)CrossRefGoogle Scholar
  18. 18.
    Rashidia, A., Namdara, A., Hatef, A.: Magnetic field induced enhanced absorption using a gated graphene/1D photonic crystal hybrid structure: quantum regime. Opt. Mater. 83, 73–77 (2018)ADSCrossRefGoogle Scholar
  19. 19.
    Aly, A.H., Aghajamali, A., Elsayed, H.A., Mobarak, M.: Analysis of cutoff frequency in a one-dimensional superconductor-metamaterial photonic crystal. Physica C. 528, 5–8 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    Barvestani, J., Rezaei, E., Vala, A.S.: Tunability of waveguide modes in two-dimensional photonic crystals based on superconducting materials. Opt. Commun. 297, 74–78 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    Zhou, R., Wang, X., Zhou, B., Gao, Y., Liu, X., Wu, L., Li, H., Chen, X., Lu, W.: Extrinsic photonic band structure calculations of a doped semiconductor under an external magnetic field. Phys. Lett. A. 372, 5224–5228 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    Aly, A.H., Sabra, W., Elsayed, H.A.: Cutoff frequency in metamaterials photonic crystals within terahertz frequencies. Int. J. Mod. Phys. B. 31, 1750123 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    Segovia-Chaves, F., Vinck-Posada, H.: Dependence of the defect mode with temperature, pressure and angle of incidence in a 1D semiconductor-superconductor photonic crystal. Physica C. 553, 1–7 (2018)ADSCrossRefGoogle Scholar
  24. 24.
    Wu, J.J., Gao, J.X.: Low temperature sensor based on one dimensional photonic crystals with a dielectric–superconducting pair defect. Optik. 126, 5368–5371 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    Wu, J., Gao, J.: Temperature-dependent optical properties of defect mode in dielectric photonic crystal heterostructure containing a superconducting layer. Mater. Chem. Phys. 171, 91–96 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    Wu, J., Gao, J.: Analysis of temperature-dependent optical properties in 1D ternary superconducting photonic crystal with mirror symmetry. J. Supercond. Nov. Magn. 28, 1971–1976 (2015)CrossRefGoogle Scholar
  27. 27.
    Aly, A.H., Mohamed, D.: The optical properties of metamaterial-superconductor photonic band gap with/without defect layer. J. Supercond. Nov. Magn. 1–6 (2018)Google Scholar
  28. 28.
    Aly, A.H., Ameen, A.A., Vigneswaran, D.: Superconductor nanometallic photonic crystals as a novel smart window for low temperature applications. J. Supercond. Nov. Magn. 1–7 (2018)Google Scholar
  29. 29.
    Elmahdy, N.A., Esmail, M.S., El-OKr, M.M.: Characterization of a Thermal Sensor Based on One-Dimensional Photonic Crystal with Central Liquid Crystal Defect. Optik. 170, 444–451 (2018)ADSCrossRefGoogle Scholar
  30. 30.
    Sreejith, K.P., Mathew, V.: Investigation of transmission properties in one-dimensional quasi-periodic superconducting photonic crystal. J. Supercond. Nov. Magn. 31(7), 1993–1998 (2018)CrossRefGoogle Scholar
  31. 31.
    Chang, Y.H., Jhu, Y.Y., Wu, C.J.: Temperature dependence of defect mode in a defective photonic crystal. Opt. Commun. 285(6), 1501–1504 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    Hu, C.A., Liu, J.W., Wu, C.J., Yang, T.J., Yang, S.L.: Effects of superconducting film on the defect mode in dielectric photonic crystal heterostructure. Solid State Commun. 157, 54–57 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    Srivastava, S.K.: Study of defect modes in 1d photonic crystal structure containing high and low Tc superconductor as a defect layer. J. Supercond. Nov. Magn. 27(1), 101–114 (2014)CrossRefGoogle Scholar
  34. 34.
    Yeh, P., Yariv, A.: Optical waves in crystals, p. 589. Wiley, New York (1984)Google Scholar
  35. 35.
    Trabelsi, Y., Bouazzi, Y., Benali, N., Kanzari, M.: Narrow stop band optical filter using one dimensional regular Fibonacci/Rudin Shapiro photonic quasicrystals. Opt. Quant. Electron. 48–54 (2016)Google Scholar
  36. 36.
    Zaghdoudi, J., Kanzari, M., Rezig, B.: Design of omnidirectional asymmetrical high reflectors for optical telecommunication wavelengths. Eur. Phys. J. B. 42(2), 181–186 (2004)ADSCrossRefGoogle Scholar
  37. 37.
    Baraket, Z., Zaghdoudi, J., Kanzari, M.: Study of optical responses in hybrid symmetrical quasi periodic photonic crystals. Prog. Electromagn. Res M 46, 29–37 (2016)CrossRefGoogle Scholar
  38. 38.
    Mouldi, A., Kanzari, M.: Design of an omnidirectional mirror using one dimensional photonic crystal with graded geometric layers thicknesses. Optik. 123, 125–131 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    Bian, L., Liu, P., Li, G.: Design of tunable devices using one-dimensional Fibonacci photonic crystals incorporating graphene at terahertz frequencies. Superlattice. Microst. 198, 522–534 (2016)ADSCrossRefGoogle Scholar
  40. 40.
    Chen, M.S., Wu, C.J., Yang, T.J.: Investigation in near zero permittivity operation range for a superconducting photonic crystal. Appl. Phys. A Mater. Sci. Process. 104, 913–919 (2011)ADSCrossRefGoogle Scholar
  41. 41.
    Kawashima, J., Yamada, Y., Hirabayashi, I.: Critical thickness and effective thermal expansion coefficient of YBCO crystalline film. Physica C. 306(1–2), 913–919 (1998)Google Scholar
  42. 42.
    Awaji, S., Watanabe, K., Ma, Y., Motokawa, M.: Preparation of YBCO by chemical vapor deposition in a magnetic field. Physica B. 294-295, 482–485 (2001)ADSCrossRefGoogle Scholar
  43. 43.
    Baraket, Z., Zaghdoudi, J., Kanzari, M.: Investigation of the 1D symmetrical linear graded superconductor dielectric photonic crystals and its potential applications as an optimized low temperature sensors, 64, pp.147–151 (2017)Google Scholar
  44. 44.
    Jena, S., Tokas, R.B., Sarkar, P., Misal, J.S., Maidul Haque, S., Rao, K.D., Thakur, S., Sahoo, N.K.: Omnidirectional photonic band gap in magnetron sputtered TiO2/SiO2 one dimensional photonic crystal. Thin Solid Films. 599, 138–144 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jihene Zaghdoudi
    • 1
  • Zina Baraket
    • 1
    Email author
  • Mounir Kanzari
    • 1
    • 2
  1. 1.Ecole Nationale d’Ingénieurs de Tunis, Laboratoire de Photovoltaïque et Matériaux SemiconducteursUniversité Tunis El ManarTunisTunisia
  2. 2.Institut Préparatoire aux Etudes d’Ingénieurs de Tunis-IPEITUniversité de TunisMontfleuryTunisia

Personalised recommendations