Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Structural, Optical, and Multiferroic Properties of Yttrium (Y3+)-Substituted BiFeO3 Nanostructures

  • 3 Accesses

Abstract

Nanoparticles of Bi1-xYxFeO3 (x = 0.0, 0.1, 0.15, 0.2) were synthesized by sol-gel pursued auto-combustion route. X-ray diffraction (XRD) pattern was recorded for analysis of the phase formation of pristine BiFeO3 (BFO) and Y3+-substituted samples. A systematic decrease in crystallite size with increasing concentration of Y3+ was observed by XRD and W-H plot. FESEM micrograph demonstrated clearly that the average grain size is decreased with increasing Y3+ ion concentration. Compositional analysis was carried out by EDS. Optical properties of the developed nanoparticles were examined by diffuse reflectance spectroscopy; it is observed that optical band gap decreases with increase in Y3+ ion concentration. Vibrating sample magnetometer (VSM) analysis revealed weak ferromagnetic behavior for pristine BFO. The ferromagnetic behavior has been enhanced with increasing concentration of Y3+ ions in BFO. Temperature dependence of dielectric constant shows an anomaly near the antiferromagnetic transition temperature in the developed materials that revealed the existence of magnetoelectric coupling in all the samples. Improved ferroelectric property has been observed by virtue of enhancement in the polarization of all substituted samples. Variation of electric field–guided strain with applied electric field has shown asymmetric behavior for samples x ≤ 0.15 and symmetric loop has been observed for x = 0.2 with the highest peak to peak strain value which makes it active material for electronic and magnetic devices.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Jiang, Q.H., Nan, C.W., Shen, Z.J.: J. Am. Ceram. Soc. 89, 2123 (2006)

  2. 2.

    Wang, Y.P., Zhou, L., Zhang, M.F., Chen, X.Y., Liu, J.M., Liu, Z.G.: Appl. Phys. Lett. 84, 1731 (2004)

  3. 3.

    Wang, J., Neaton, J.B., Zheng, H., Nagarajan, V., Ogale, S.B., Liu, B., Viehland, D., Vaithyanathan, V., Schlom, D.G., Waghmare, U.V., Spaldin, N.A., Rabe, K.M., Wuttig, M., Ramesh, R.: Science. 299, 1719 (2003)

  4. 4.

    Fiebig, M., Lottermoser, T., Frohlich, D., Goltsev, A.V., Pisarev, R.V.: Nature. 419, 818 (2002)

  5. 5.

    Gavriliuk, A.G., StruzhkinI, V.V., LyubutinI, S., Troyanet, A.: JETP Lett. 86, 197 (2007)

  6. 6.

    Banerjee, M., Mukherjee, A., Banerjee, A., Das, D., Basu, S.: N. J. Chem. 41, 10985 (2017)

  7. 7.

    Catalan, G., Scott, J.F.: Adv. Mater. 21, 2463 (2009)

  8. 8.

    Chauhan, S., Arora, M., Sati, P.C., Chhoker, S., Katyal, S.C., Kumar, M.: Ceram. Int. 39, 6399 (2013)

  9. 9.

    Takahashi, K., Kida, N., Tonouchi, M.: Phys. Rev. Lett. 96, 1 (2006)

  10. 10.

    Fkia, H., Koubaaa, M., Sicardb, L., Cheikhrouhou-Koubaaa, W., Cheikhrouhoua, A., Ammar-Merahb, S.: Ceram. Int. 43, 4139 (2017)

  11. 11.

    Eerenstein, W., Mathur, N.D., Scott, J.F.: Nature. 442, 759 (2006)

  12. 12.

    Azough, F., Freer, R., Thrall, M., Cernik, R.J., Tuna, F., Collison, D.: J. Eur.Ceram. Soc. 30, 727 (2010)

  13. 13.

    Yu, B., Li, M., Liu, J., Guo, D., Pei, L., Zhao, X.: J. Phys. Appl. Phys. 41, 065003 (2008)

  14. 14.

    Das, S.R., Choudhary, R.N.P., Bhattacharya, P., Katiyara, R.S.: J. Appl. Phys. 101, 034104 (2007)

  15. 15.

    Layek, S., Verma, H.C., Garg, A.: J. Alloy. Compd. 651, 294–301 (2015)

  16. 16.

    Ramachandran, B., Dixit, A., Naik, R., Lawes, G., Ramachandra Rao, M.S.: J. Appl. Phys. 111, 023910 (2012)

  17. 17.

    Mao, W., Wang, X., Han, Y., Li, X., Li, Y., Wang, Y., Ma, Y., Feng, X., Yang, T., Yang, J., Huang, W.: J. Alloy. Compd. 584, 520–523 (2014)

  18. 18.

    Medina, L.M.S., Jorge, G.A., Negri, R.M.: J. Alloy. Compd. 592, 306 (2014)

  19. 19.

    Mishra, R.K., Pradhan, D.K., Choudhary, R.N.P., Banerjee, A.: J. Phys. Condens. Matter. 20, 045218 (2008)

  20. 20.

    Gautam, A., Uniyal, P., Yadav, K.L., Rangra, V.S.: J. Phy. Chemist. Solid. 73, 188 (2012)

  21. 21.

    Zhong, M., Kumar, N.P., Sagar, E., Jian, Z., Yemin, H., Reddy, P.V.: Mater. Chem. Phys. 173, 126 (2016)

  22. 22.

    Gore, S.K., Mane, R.S., Naushad, M., Jadhav, S.S., Zate, M.K., Alothman, Z.A., Hui, B.K.N.: Dalt. Trans. 44, 6384 (2015)

  23. 23.

    Singh, A., Singh, V., Bamzai, K.K.: Mater. Chem. Phys. 155, 92 (2015)

  24. 24.

    Karimi, S., Reaney, I.M., Levin, I., Sterianou, I.: Appl.Phys.Lett. 94, 112903 (2009)

  25. 25.

    Verma, V., Beniwal, A., Ohlan, A., Tripathi, R.: J. Mag. Mag. 394, 385 (2015)

  26. 26.

    Gao, F., Chen, X.Y., Yin, K.B., Dong, S., Ren, Z.F., Yuan, F., Yu, T., Zou, Z., Liu, J.M.: Adv. Mater. 19, 2889 (2007)

  27. 27.

    Tauc, J., Grigorovici, R., Vancu, A.: Phys. Stat. Solid. B. 15, 627 (1966)

  28. 28.

    Ihlefeld, J.F., Podraza, N.J., Liu, Z.K., Rai, R.C., Xu, X., Heeg, T., Chen, Y.B., Li, J., Collins, R.W., Musfeldt, J.L., Pan, X.Q., Schubert, J., Ramesh, R., Schlom, D.G.: Appl. Phys. Lett. 92, 142908 (2008)

  29. 29.

    Arora, M., Kumar, M.: Mater. Lett. 137, 285 (2014)

  30. 30.

    Bellakki, M.B., Manivannan, V.J.: Sol-Gel Sci. Technol. 53, 184 (2010)

  31. 31.

    Mocherla, P.S.V., Karthik, C., Ubic, R., Ramachandra Rao, M.S., Sudakar, C.: Appl. Phy. Lett. 103, 022910 (2013)

  32. 32.

    Zhanga, Y.S.X., Wanga, X., Wangc, Y., Wanga, Z.: J. Alloys. Comp. 507, 157 (2010)

  33. 33.

    Nalwa, K.S., Garg, A., Upadhyaya, A.: Mater. Lett. 62, 878 (2008)

  34. 34.

    Luo, L., Shen, K., Xu, Q., Zhou, Q., Wei, W., Gondal, M.A.: J. Alloys. Comp. 558, 73 (2013)

  35. 35.

    Park, T.J., Papaefthymiou, G.C., Viescas, A.J., Moodenbaugh, A.R., Wong, S.S.: Nano Lett. 7, 766 (2007)

  36. 36.

    Ederer, C., Spaldin, N.A.: Phys. Rev. B. 71, 060401 (2005)

  37. 37.

    Humbe, A.V., Kounsalye, J.S., Shisode, M.V., Jadhav, K.: Ceram. Int. 44, 5466 (2018)

  38. 38.

    Trukhanov, S., Trukhanov, A., Vasiliev, A., Balagurov, A., Szymczak, H.: J. Exp. Theor. Phys. 113, 819 (2011)

  39. 39.

    Wagner, K.W.: Zur theorie der unvollkommenen dielektrika. Ann.Phys.(Leipzig). 40(817), (1913)

  40. 40.

    Maxwell, J.C.: Electricity and Magnetism, vol. vol.1. Oxford University Press, Oxford (Section328 (1929)

  41. 41.

    Koops, C.G.: Phys. Rev. 83(1), 121 (1951)

  42. 42.

    Jonscher, A.K., Meca, F., Millany, H.M.: J.Phys. C: Solid State Phys. 12, L293 (1979)

  43. 43.

    Das, A., De, S., Bandyopadhyay, S., Chatterjee, S., Das, D.: J. Alloys Compd. 697, 353 (2017)

  44. 44.

    Sheoran, N., Kumar, V., Kumar, A.: J. magnet. and magnet. mater. 475, 30 (2019)

  45. 45.

    Godara, S., Sinha, N., Ray, G., Kumar, B.: J. Asia. Ceram. Society. 2, 421 (2014)

  46. 46.

    Lin, J.W., Tang, Y.H., Lue, C.S., Lin, J.G.: Appl. Phy. Lett. 96, 232507 (2010)

  47. 47.

    Kimura, T., Kawamoto, S., Yamada, I., Azuma, M., Takno, M., Tokura, Y.: Phys. Rev.B. 67, 180401 (2003)

  48. 48.

    Arya, G.S., Kotnala, R.K., Negi, N.S.: J. Appl. Phys. 113, 044107 (2013)

  49. 49.

    Kumar, P., Chand, P.: J. Allo. and Comp. 748, 504 (2018)

  50. 50.

    Arlt, G.: Ferroelectrics. 104, 217 (1990)

  51. 51.

    Wang, K., Yao, F.Z., Jo, W., Gobeljic, D., Shvartsman, V.V., Lupascu, D.C., Li, J.F., Rödel, J.: Adv. Funct. Mater. 23, 4079 (2013)

  52. 52.

    Rojac, T., Kosec, M., Damjanovic, D.: J. Am. Ceram. Soc. 94, 4108 (2011)

  53. 53.

    Eric Cross, L.: Ferroelectrics. 76, 241 (1987)

Download references

Funding

This work is supported by the UGC-DAE Consortium for Scientific Research, Indore for providing project CSR-IC-TIMR-02/CRS-269/2017-18/1275 to carry out this work.

Author information

Correspondence to Vinod Kumar.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sheoran, N., Kumar, A., Kumar, V. et al. Structural, Optical, and Multiferroic Properties of Yttrium (Y3+)-Substituted BiFeO3 Nanostructures. J Supercond Nov Magn (2020). https://doi.org/10.1007/s10948-019-05411-2

Download citation

Keywords

  • Nanoparticles
  • Structural transformation
  • Multiferroic
  • Magnetization
  • Polarization