Advertisement

Exploring the Structural, Dielectric and Magnetic Properties of 5 Mol% Bi3+-Substituted CoCr2O4 Nanoparticles

  • K. Manjunatha
  • V. Jagadeesha AngadiEmail author
  • K. M. Srinivasamurthy
  • Shidaling Matteppanavar
  • Vinayak K. Pattar
  • U. Mahaboob Pasha
Original Paper
  • 50 Downloads

Abstract

In the present work for the first time, we report in-depth structural, electrical, optical and magnetic properties of a family of cobalt chromate nanoparticles with 5 mol% Bi3+ substitution of the average crystallite size of 15 nm, fabricated by a solution combustion method using urea and glucose as a fuel. Co0.95Bi0.05Cr2O4 shows a single phase with spinel cubic structure with a space group of Fd3m with a lattice parameter of 8.334 Å. The morphology of the family of Bi3+-doped CoCr2O4 shows a highly porous nature. Transmission electron microscopy (TEM) shows samples are in nano size, i.e. 22 nm with well crystalline nature. The energy gap was estimated by using UV spectrum and found in the range of 3.86 eV. Temperature-dependent dielectric constant (ε′), dielectric loss (ε″) and loss tangent (tan δ) are explained by using Maxwell–Wagner and Koop’s phenomenological theory. The evolution of magnetic behaviour was studied as a function of temperature and magnetic field to study the magnetic transitions such as paramagnetic to long-range collinear ferrimagnetism transitions, and it was found at 98 K and non-collinear ferrimagnetism at 26 K. M−H loop at 300 K nearly shows a paramagnetic phase at 98 K, and it clearly suggests that samples exhibit superparamagnetic nature.

Keywords

Chromates Solution combustion method Ferrimagnetism Koop’s phenomenological theory 

Notes

Acknowledgements

Mr. Manjuntha K would like to express sincere thanks to Presidency University management for providing the JRF fellowship for pursuing Ph.D. programme. Dr. Jagadeesha Angadi V would like to express sincere thanks to the UGC-DAE CSR Kolkotta Centre for providing the magnetisation measurements. Further, authors are expressing deep thanks to Dr. H M Suresh Kumar for providing the instrument facility sponsored by the VGST Project CISEE-VGST/GRD-531/2016-17.

References

  1. 1.
    Fiebig, M.: Revival of the magnetoelectric effect. J. Phys. D. Appl. Phys. 38, R123 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    Kimura, T., Goto, T., Shintani, H., Ishizaka, K., Arima, T., Tokura, Y.: Reversible magnetic domain-wall motion under an electric filed in a magnetoelectric thin film. Nature. 426, 55 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    2.Srinivasamurthy, K.M., Manjunatha, K., Sitalo, E.I., Kubrin, S.P., Sathish, I.C., Matteppanavar, S., Rudraswamy, B., Angadi, V.J.: Effect of Ce3+ substitution on the structural, morphological, dielectric, and impedance spectroscopic studies of Co–Ni ferrites for automotive applications. Indian J. Phys. 1, 1–12 (2019).  https://doi.org/10.1007/s12648-019-01495-7 CrossRefGoogle Scholar
  4. 4.
    Eerenstein, W., Mathur, N.D., Scott, J.F.: Multiferroic and magnetoelectric materials. Nature. 442, 759 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    Manjunatha, K., Srininivasamurthy, K.M., Naveen, C.S., Ravikiran, Y.T., Sitalo, E.I., Kubrin, S.P., Matteppanavar, S., Reddy, N.S., Angadi, V.J.: Observation of enhanced humidity sensing performance and structure, dielectric, optical and DC conductivity studies of scandium doped cobalt chromate. Journal of Materials Science: Materials in Electronics. 30(2019), 17202–17217Google Scholar
  6. 6.
    Jagadish K, Galivarapu, D. Kumar, A. Banerjee, Chandana Rath, Magnetic transitions in chemically synthesized nanoparticles of CoCr2O4, IEEE Trans. Magn., 52 (2016) 8Google Scholar
  7. 7.
    Kassem, M.A., El-Fadl, A.A., Nashaat, A.M., Nakamura, H.: Structure, optical and varying magnetic properties of insulating MCr2O4 (M = Co, Zn, Mg and Cd) nanospinels. Journal of Alloys and Compounds. 790, 853–862 (2019)CrossRefGoogle Scholar
  8. 8.
    Gilabert, J., Aapalacios, V.S., Mestre, S.: Solution combustion synthesis of (Co, Ni)Cr2O4 pigments: influence of initial solution concentration. Ceram. Int. 43, 10032–10040 (2017)CrossRefGoogle Scholar
  9. 9.
    Hankare, P.P., Sankpal, U.B., Patil, R.P., Mulla, I.S., Lokhande, P.D., Gajbhiye, N.S.: Synthesis and characterization of CoCrxFe2-xO4 nanoparticles. J. Alloys Compd. 485, 798–801 (2009)CrossRefGoogle Scholar
  10. 10.
    Srinivasamurthy, K.M., Jagadeesha, A.V., Kubrin, S.P., Matteppanavar, S., Sarychev, D.A., Kumar, P.M., Azale, H.W., Rudraswamy, B.: Tuning of ferrimagnetic nature and hyperfine interaction of Ni2+ doped cobalt ferrite nanoparticles for power transformer applications. Ceramics International. 44, 9194–9203 (2018)CrossRefGoogle Scholar
  11. 11.
    Chamyani, S., Salehirad, A., Oroujzadeh, N., Fateh, D.S.: Effect of fuel type on structural and physicochemical properties of solution combustion synthesized CoCr2O4 ceramic pigment nanoparticles. Ceramics International. 44, 7754–7760 (2018)CrossRefGoogle Scholar
  12. 12.
    Manjunatha, K., Sathish, I.C., Kubrin, S.P., Kozakov, A.T., Lastovina, T.A., Nikolskii, A.V., Srinivasamurthy, K.M., Pasha, M., Angadi, V.J.: X-ray photoelectron spectroscopy and low temperature Mössbauer study of Ce3+ substituted MnFe2O4. Journal of Materials Science: Materials in Electronics. 30, 10162–10171 (2019)Google Scholar
  13. 13.
    Madhu, B.J., Jagadeesha Angadi, V., Mallikarjuna, H., Manjunatha, S.O., Shruthi, B., Madhu Kumar, R.: Dielectric behavior and A. C. conductivity studies on nickel nanoferrites synthesized by solution combustion method. Advance Material Reasearch. 584, 299–302 (2012)Google Scholar
  14. 14.
    Seevakan, K., Manikandan, A., Devendran, P., Slimani, Y., Baykal, A., Alagesan, T.: Structural, magnetic and electrochemical characterizations of Bi2Mo2O9 nanoparticle for supercapacitor application. J. Magn. Magn. Mater. 486, 165254 (2019)CrossRefGoogle Scholar
  15. 15.
    Slimani, Y., Selmi, A., Hannachi, E., Almessiere, M.A., Mumtaz, M., Bayka, A., Ercan, I.: Study of tungsten oxide effect on the performance of BaTiO3 ceramics. Journal of Materials Science: Materials in Electronics. 30(14), 13509–13518 (2019)Google Scholar
  16. 16.
    Younisa, M., Saleemb, M., Atiqa, S., Naseema, S.: Magnetic phase transition and magneto-dielectric analysis of spinel chromites: MCr2O4 (M = Fe, Co and Ni). Ceram. Int. 44, 10229–10235 (2018)CrossRefGoogle Scholar
  17. 17.
    Seevakan, K., Manikandan, A., Devendran, P., Slimani, Y., Baykal, A., Alagesan, T.: Structural, morphological and magneto-optical properties of CuMoO4 electrochemical nanocatalyst as supercapacitor electrode. Ceram. Int. 44, 20075–20083 (2018)CrossRefGoogle Scholar
  18. 18.
    Lawrence, K., Mohanty, P., Shripathi, T., Rath, C.: Appearance of superparamagnetic phase below Curie temperature in cobalt chromite nanoparticles. Nanosci. Nanotechnol. Lett. 1, 199–203 (2009)CrossRefGoogle Scholar
  19. 19.
    Gingasu, D., Mindru, I., Patron, L., Culita, D.C., Calderon-Moreno, J.M., Diamandescu, L., Feder, M., Oprea, O.: Precursor method—a non conventional route for the synthesis of ZnCr2O4 spinel. J. Phys. Chem. Solids. 74, 1295–1302 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    Pratapkumar, C., Prashantha, S.C., Nagabhushana, H., Jnaneshwara, D.M.: Photoluminescence and photometric studies of low temperature prepared red emitting MgAl2O4:Cr3+ nanophosphors for solid state displays. Journal of Science: Advanced Materials and Devices. 3, 464–470 (2018)Google Scholar
  21. 21.
    Slimani, Y., Unal, B., Hannachi, E., Selmi, A., Almessiere, M.A., Nawaz, M., Baykal, A., Ercan, I., Yildiz, M.: Frequency and dc bias voltage dependent dielectric properties and electrical conductivity of BaTiO3-SrTiO3/(SiO2)x nanocomposites. Ceram. Int. 45, 11989–12000 (2019)CrossRefGoogle Scholar
  22. 22.
    Slimani, Y., Selmi, A., Hannachi, E., Almessiere, M.A., Baykal, A., Ercan, I.: Impact of ZnO addition on structural, morphological, optical, dielectric and electrical performances of BaTiO3 ceramics. J. Mater. Sci. Mater. Electron. 30, 9520–9530 (2019)CrossRefGoogle Scholar
  23. 23.
    Abbasi, A., Hamadanian, M., Salavati-Niasari, M., Mazhari, M.P.: Hydrothermal synthesis, characterization and photodegradation of organic pollutants of CoCr2O4/Ag nanostructure and thermal stability of epoxy acrylate nanocomposite. Adv. Powder Technol. 28, 2756–2765 (2017)CrossRefGoogle Scholar
  24. 24.
    Ikram, S., Arshad, M.I., Mahmood, K., Ali, A., Amin, N., Ali, N.: Tailoring the structural, magnetic and dielectric properties of Ni-Zn-CdFe2O4 spinel ferrites by the substitution of lanthanum ions. J. Alloys Compd. 769, 1019–1025 (2018)CrossRefGoogle Scholar
  25. 25.
    Jagdeesha Angadi, V., Choudhury, L., Sadhana, K., Liu, H.-L., Sandhya, R., Matteppanavar, S., Rudraswamy, B., Pattar, V., Anavekar, R.V., Praveena, K.: Structural, electrical and magnetic properties of Sc3+ doped Mn-Zn ferrite nanoparticles. J Magnetism Magnetic Mater. 424, 1–11 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    Chavan, P., Naik, L.R.: X-ray diffraction studies and dielectric properties of Ni doped Mg ferrites. Vacuum. 152, 47–49 (2018)ADSCrossRefGoogle Scholar
  27. 27.
    Batoo, K.M., Kumar, S., Lee, C.G., Alimuddin: Study of dielectric and ac impedance properties of Ti doped Mn ferrites. Curr. Appl. Phys. 9, 1397–1406 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    Jagadeesha Angadi, V., Rudraswamy, B., Sadhana, K., Praveena, K.: Effect of Sm3+-Gd3+ co-doping on dielectric properties of Mn-Zn ferrites synthesized via combustion route. Materials Today: Proceedings. 3, 2178–2186 (2016)Google Scholar
  29. 29.
    Almessiere, M.A., Unal, B., Slimani, Y., Demir Korkmaz, A., Algarou, N.A., Baykal, A.: Electrical and dielectric properties of Nb3+ ions substituted Ba-hexaferrites. Results Phys. 14, 102468 (2019)CrossRefGoogle Scholar
  30. 30.
    Irfan, M., Islam, M., Ali, I., Iqbal, M., Karamat, N., Khan, H.: Effect of Y2O3 doping on the electrical transport properties of Sr2MnNiFe12O22 Y-type hexaferrite. Curr. Appl. Phys. 14, 112–117 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    Almessiere, M.A., Unal, B., Slimani, Y., Korkmaz, A.D., Baykal, A., Ercana, I.: Electrical properties of La3+ and Y3+ ions substituted Ni0.3Cu0.3Zn0.4Fe2O4 nanospinel ferrites. Results Phys. 15, 102755 (2019)CrossRefGoogle Scholar
  32. 32.
    Agami, W.R.: Effect of neodymium substitution on the electric and dielectric properties of Mn-Ni-Zn ferrite. Phys. B Condens. Matter. 534, 17–21 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    Iikram, S., Rashad, I., Mahmood, K., Ali, A., Amin, N., Ali, N.: Structural, magnetic and dielectric study of La3+ substituted Cu0.8Cd0.2Fe2O4 ferrite nanoparticles synthesized by the co-precipitation method. Journal of Alloys and Compounds. 769, 1019–1025 (2018)CrossRefGoogle Scholar
  34. 34.
    Ajmal, M., Islam, M.U., Asharaf, G.A., Nazir, M.A., Ghouri, M.I.: The influence of Ga doping on structural magnetic and dielectric properties of NiCr0.2Fe1.8O4 spinel ferrite. Physica B: Condensed Matter. 526, 149–154 (2017)ADSCrossRefGoogle Scholar
  35. 35.
    Ondruska, J., Csaki, S., Trnovcova, V., Stubna, I., Lukac, F., Pokorny, J., Vozar, L., Dobron, P.: Influence of mechanical activation on DC conductivity of kaolin. Appl. Clay Sci. 154, 36–42 (2018)CrossRefGoogle Scholar
  36. 36.
    Unal, B., Almessiere, M., Demir Korkmaz, A., Slimani, Y., Baykal, A.: Effect of thulium substitution on conductivity and dielectric belongings of nanospinel cobalt ferrite. Journal of Rare Earths, online. (2019).  https://doi.org/10.1016/j.jre.2019.09.011
  37. 37.
    Unal, B., Almessiere, M., Slimani, Y., Baykal, A., Trukhanov, A.V., Ercan, I.: The conductivity and dielectric properties of neobium substituted Sr-hexaferrites. Nanomaterials. 9, 1168 (2019)CrossRefGoogle Scholar
  38. 38.
    Shanthala, V.S., Shobha Devi, S.N., Murugendrappa, M.V.: Article synthesis, characterization and DC conductivity studies of polypyrrole/copper zinc iron oxide nanocomposites. J. Asian Ceramic Soc. 5, 227–234 (2017)CrossRefGoogle Scholar
  39. 39.
    Winkler, E., Blanco Canosa, S., Rivadulla, F., López-Quintela, M.A., Rivas, J., Caneiro, A., Causa, M.T., Tovar, M.: Magnetocrystalline interactions in MnCr2O4 spinel. Phys. Rev. B. 80, 104418 (2009)ADSCrossRefGoogle Scholar
  40. 40.
    Yamasaki, Y., Miyasaka, S., Kaneko, Y., He, J.-P., Arima, T., Tokura, Y.: Magnetic reversal of the ferroelectric polarization in a multiferroic spinel oxide. Phys. Rev. Lett. 96, 207204 (2006)ADSCrossRefGoogle Scholar
  41. 41.
    Choi, Y.J., Okamoto, J., Huang, D.J., Chao, K.S., Lin, H.J., Chen, C.T., van Veenendaal, M., Kaplan, T.A., Cheong, S.W.: Thermally or magnetically induced polarization reversal in the multiferroic CoCr2O4. Phys. Rev. Lett. 102, 067601 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    Arima, T., Yamasaki, Y., Goto, T., Iguchi, S., Ohgushi, K., Miyasaka, S., Tokura, Y.: Spin–lattice coupling in ferroelectric spiral magnets: comparison between the cases of (Tb,Dy)MnO3 and CoCr2O4. J. Phys. Soc. Jpn. 76, 023602 (2007)ADSCrossRefGoogle Scholar
  43. 43.
    Bordacs, S., Varjas, D., Kezsmarki, I., Mihaly, G., Baldassarre, L., Abouelsayed, A., Kuntscher, C.A., Ohgunshi, K., Tokura, Y.: Magnetic-order-induced crystal symmetry lowering in ACr2O4 ferrimagnetic spinels. Phys. Rev. Lett. 103, 077205 (2009)ADSCrossRefGoogle Scholar
  44. 44.
    Lawes, G., Melot, B., Page, K., Ederer, C., Hayward, M.A., Proffen, T., Seshadri, R.: Dielectric anomalies and spiral magnetic order in CoCr2O4. Phys. Rev. Lett. 74, 024413 (2006)ADSGoogle Scholar
  45. 45.
    Pronin, A.V., Uhlarz, M., Beyer, R., Fischer, T., Wosnitza, J., Gorshunov, B.P., Komandin, G.A., Prokhorov, A.S., Dressel, M., Bush, A.A., Torgashev, V.I.: B-T phase diagram of CoCr2O4 in magnetic fields up to 14 T. Phys. Rev. B. 85, 012101 (2012)ADSCrossRefGoogle Scholar
  46. 46.
    Fava, F.F., Baraille, I., Lichanot, A., Larrieu, C., Dovesi, R.: On the structural, electronics and magnetic properties of MnCr2O4 spinel. J. Phys. Condens. Matter. 9, 10715 (1997)ADSCrossRefGoogle Scholar
  47. 47.
    Tomiyasu, K., Fukunaga, J., Suzuki, H.: Magnetic short-range order and reentrant-spin-glass-like behavior in CoCr2O4 and MnCr2O4 by means of neutron scattering and magnetization measurements. Phys. Rev. B. 70, 214434 (2004)ADSCrossRefGoogle Scholar
  48. 48.
    Bharamagoudar, R., Matteppanavar, S., Patil, A.S., Pattar, V., Jagadeesha Angadi, V., Manjunatha, K.: Effect of Dy on structural and low temperature magnetic properties of Ca0.7Dy0.3MnO3. Chemical Data Collections. 24, 100288 (2019)CrossRefGoogle Scholar
  49. 49.
    Galivarapu, J.K., Kumar, D., Banerjee, A., Sathe, V., Aquilanti, G., Rath, C.: Effect of size reduction on cation distribution and magnetic transitions in CoCr2O4 multiferroic: EXAFS, magnetic and diffused neutron scattering measurements. RSC Adv. 6, 63809–63819 (2016)CrossRefGoogle Scholar
  50. 50.
    Angadi, V.J., Rudraswamy, B., Melagiriyappa, E., Shivaraj, Y., Matteppanavar, S.: Effect of Sm3+ substitution on structural and magnetic investigation of nano sized Mn–Sm–Zn ferrites. Indian J. Phys. 90, 881–885 (2016)ADSCrossRefGoogle Scholar
  51. 51.
    Almessiere, M.A., Slimani, Y., Korkmaz, A.D., Guner, S., Sertkol, M., Shirsath, S.E., Baykal, A.: Structural, optical and magnetic properties of Tm3+ substituted cobalt spinel ferrites synthesized via sonochemical approach. Ultrasonics – Sonochemistry. 54, 1–10 (2019)CrossRefGoogle Scholar
  52. 52.
    Almessiere, M.A., Slimani, Y., Gungunes, H., Manikandan, A., Baykal, A.: Investigation of the effects of Tm3+ on the structural, microstructural, optical, and magnetic properties of Sr hexaferrites. Results Phys. 13, 102166 (2019)CrossRefGoogle Scholar
  53. 53.
    Lakshmiprasanna, H.R., Jagadeesha Angadi, V., Babu, B.R., Pasha, M., Manjunatha, K., Matteppanavar, S.: Effect of Pr3+-doping on the structural, elastic and magnetic properties of Mn-Zn ferrite nanoparticles prepared by solution combustion synthesis method. Chemical Data Collections. 24, 100273 (2019)CrossRefGoogle Scholar
  54. 54.
    Kumar, D., Mohanty, P., Singh, V.P., Galivarapu, J.K., Banerjee, A., Ganesan, V., Rath, C.: Tuning of magnetic transition temperatures in nanoparticles of CoCr2O4 multiferroic by B-site mixing. Mater. Res. Bull. 54, 78–83 (2014)CrossRefGoogle Scholar
  55. 55.
    Slimani, Y., Almessiere, M.A., Nawaz, M., Baykal, A., Akhtar, S., Ercan, I., Belenli, I.: Effect of bimetallic (Ca, Mg) substitution on magneto-optical properties of NiFe2O4 nanoparticles. Ceram. Int. 45, 6021–6029 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • K. Manjunatha
    • 1
  • V. Jagadeesha Angadi
    • 2
    Email author
  • K. M. Srinivasamurthy
    • 3
  • Shidaling Matteppanavar
    • 4
  • Vinayak K. Pattar
    • 5
  • U. Mahaboob Pasha
    • 1
  1. 1.Department of Physics, School of EngineeringPresidency UniversityBangaloreIndia
  2. 2.Department of PhysicsP.C. Jabin Science CollegeHubballiIndia
  3. 3.Department of PhysicsBangalore UniversityBangaloreIndia
  4. 4.Department of PhysicsBasavaprabhu Kore Arts, Science and Commerce CollegeChikodiIndia
  5. 5.New Chemistry UnitJawaharlal Nehru Center for Advanced Scientific ResearchBangaloreIndia

Personalised recommendations