Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Memristive Properties of Oxide-based High-Temperature Superconductors

  • 23 Accesses

Abstract

The study of memristive properties or effect of resistive switchings in four classes of high-temperature superconductors (HTSC), namely Bi2Sr2CaCu2O8+y (BSCCO), YBa2Cu3O7−y (YBCO), Ba0.6K0.4BiO3−y (BKBO), and Nd2−xCexCuO4−y (NCCO), is presented. The purpose of this study is to reveal functional properties of HTSC which become apparent in the effects under discussion, prospects of usage of HTSC-based memristors in applications, and search for new mechanisms of strongly correlated nature to realize new-generation memristors (Tulina 1). The properties are as follows: undergoing the metal-insulator transition at oxygen doping, transport anisotropy, and existence of charge reservoirs through which doping of conductive copper–oxygen layers is carried out. These are the main functional properties of HTSC which allows their usage in memristors. By the example of study of bipolar effect of resistive switching in HTSC-based heterojunctions, it is shown how one can form memristor structures based on HTSC using their functional properties.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Tulina, N.A.: Memristor properties of high temperature superconductors. arXiv:1801.09428(2018)

  2. 2.

    Li, Y., Wang, Z., Midya, R., Xia, Q., Yang, J.J.: Review of memristor devices in neuromorphic computing: materials sciences and device challenges. J. Phys. D 51(50), 503002 (2018). https://doi.org/10.1088/1361-6463/aade3f

  3. 3.

    Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453(7191), 80–83 (2008). https://doi.org/10.1038/nature06932

  4. 4.

    Yang, J.J., Strukov, D.B., Stewart, D.R.: Memristive devices for computing. Nat. Nanotechnol. 8, 13–24 (2013). https://doi.org/10.1038/nnano.2012.240

  5. 5.

    Waser, R., Aono, M.: Nanoionics-based resistive switching memories. Nat. Mater. 6, 833–840 (2007). https://doi.org/10.1038/nmat2023

  6. 6.

    Pershin, Y.V., Di Ventra, M.: Memory effects in complex materials and nanoscale systems. Adv. Phys. 60 (2), 145–227 (2011). https://doi.org/10.1080/00018732.2010.544961

  7. 7.

    Jeong, D.S., Thomas, R., Katiyar, R.S., Scott, J.F., Kohlstedt, H., Petraru, A., Hwang, C.S.: Emerging memories: resistive switching mechanisms and current status. Rep. Prog. Phys. 75(7), 076502–076534 (2012). https://doi.org/10.1088/0034-4885/75/7/076502

  8. 8.

    Lim, E.W., Ismail, R.: Conduction mechanism of valence change resistive switching memory: a survey. Electronics 4(3), 586–613 (2015). https://doi.org/10.3390/electronics4030586

  9. 9.

    Pérez-Tomás, A.: Functional oxides: functional oxides for photoneuromorphic engineering: toward a solar brain (Adv. Mater. Interfaces 15/2019). Adv. Mater. Interfaces 6(15), 1970096 (2019). https://doi.org/10.1002/admi.201970096

  10. 10.

    Pickett, W.E., Singh, D.J., Krakauer, H., Cohen, R.E.: Fermi surfaces, fermi liquids, and high-temperature superconductors. Science 255(5040), 46–54 (1992). https://doi.org/10.1126/science.255.5040.46

  11. 11.

    Tulina, N.A., Ionov, A.M., Chaika, A.N.: Reversible electrical switching at the Bi2Sr2CaCu2O8+y surface in the normal metal–Bi2Sr2CaCu2O8+y single crystal heterojunction. Phys. C 366(1), 23–30 (2001). https://doi.org/10.1016/S0921-4534(01)00631-1

  12. 12.

    Tulina, N.A., Borisenko, I.Y., Ivanov, A.A., Ionov, A.M., Shmytko, I.M.: Oxygen doping of HTSC and resistive switching in HTSC-based heterostructures. SpringerPlus 2(1), 384 (2013). https://doi.org/10.1186/2193-1801-2-384

  13. 13.

    Tulina, N.A., Rossolenko, A.N., Ivanov, A.A., Sirotkin, V.V., Shmytko, I.M., Borisenko, I.Y., Ionov, A.M.: Nd2−xCexCuO4−y/Nd2−xCexOy boundary and resistive switchings in mesoscopic structures on base of epitaxial Nd1.86Ce0.14CuO4−y films. Phys. C 527, 41–45 (2016). https://doi.org/10.1016/j.physc.2016.05.015

  14. 14.

    Tulina, N.A., Ivanov, A.A., Rossolenko, A.N., Shmytko, I.M., Ionov, A.M., Mozhchil, R.N., Bozhko, S.I., Borisenko, I.Y., Tulin, V.A.: X-ray photoelectron spectroscopy studies of electronic structure of Nd2−xCexCuO4−y and YBa2Cu3O7−y epitaxial film surfaces and resistive switchings in high temperature superconductor-based heterostructures. Mater. Lett. 203, 97–99 (2017). https://doi.org/10.1016/j.matlet.2017.05.091

  15. 15.

    Tulina, N.A., Borisenko, I.Y., Rossolenko, A.N., Ivanov, A.A., Sirotkin, V.V., Shmytko, I.M., Tulin, V.A.: Static and dynamic effects of the resistive switchings in heterocontacts based on superconductive Nd2−xCexCuO4−y films. Microelectron. Eng. 187-188, 116–120 (2018). https://doi.org/10.1016/j.mee.2017.11.006

  16. 16.

    Zakharov, A.A., Johansson, U., Leandersson, M., Nylén, H., Qvarford, M., Lindau, I., Nyholm, R.: Metal-dielectric transition in Ba0.6K0.4BiO3−y single crystals studied by scanning photoelectron microscopy. Phys. Rev. B 56 (10), R5755–R5758 (1997). https://doi.org/10.1103/PhysRevB.56.R5755

  17. 17.

    Sano, Y.: Effect of space angle on constriction resistance and contact resistance for a point contact. J. Appl. Phys. 58(7), 2651–2654 (1985). https://doi.org/10.1063/1.335897

  18. 18.

    Tulina, N.A., Borisenko, I.Y., Sirotkin, V.V.: Bipolar resistive switchings in Bi2Sr2CaCu2O8+δ. Solid State Commun. 170, 48–52 (2013). https://doi.org/10.1016/j.ssc.2013.07.023

  19. 19.

    Aichhorn, M., Arrigoni, E.: Weak phase separation and the pseudogap in the electron-doped cuprates. Europhys. Lett. 72(1), 117–123 (2005). https://doi.org/10.1209/epl/i2005-10192-1

  20. 20.

    Fournier, P., Maiser, E., Greene, R.L.: Current research issues for the electron-doped cuprates. In: Bok, J., Deutscher, G., Pavuna, D., Wolf, S.A. (eds.) The Gap Symmetry and Fluctuations in High-Tc Superconductors. https://doi.org/10.1007/0-306-47081-0_9, pp 145–158. Springer, Boston (2002)

  21. 21.

    Dagotto, E.: Correlated electrons in high-temperature superconductors. Rev. Mod. Phys. 66(3), 763–840 (1994). https://doi.org/10.1103/RevModPhys.66.763

  22. 22.

    Tulina, N.A., Klinkova, L.A.: Reversal of the resistive switching effect in electron-doped Ba0.6K0.4BiO3−x. J. Exp. Theor. Phys. 105(1), 238–240 (2007). https://doi.org/10.1134/S1063776107070527

  23. 23.

    Tulina, N.A., Borisenko, I.Y.: Frequency dependence of the resistive switching effect in Bi2Sr2CaCu2O8+y/Ag film heterocontacts. Phys. Lett. A 372(6), 918–923 (2008). https://doi.org/10.1016/j.physleta.2007.08.045

  24. 24.

    Higgins, J.S., Dagan, Y., Barr, M.C., Weaver, B.D., Greene, R.L.: Role of oxygen in the electron-doped superconducting cuprates. Phys. Rev. B 73(10), 104510 (2006). https://doi.org/10.1103/PhysRevB.73.104510

  25. 25.

    Gauthier, J., Gagné, S., Renaud, J., Gosselin, M.-È., Fournier, P., Richard, P.: Different roles of cerium substitution and oxygen reduction in transport in Pr2−xCexCuO4 thin films. Phys. Rev. B 75(2), 024424 (2007). https://doi.org/10.1103/PhysRevB.75.024424

  26. 26.

    Plecenik, T., Tomášek, M., Belogolovskii, M., Truchly, M., Gregor, M., Noskovič, J., Zahoran, M., Roch, T., Boylo, I., Španková, M., Chromik, Š., Kúš, P., Plecenik, A.: Effect of crystallographic anisotropy on the resistance switching phenomenon in perovskites. J. Appl. Phys. 111(5), 056106 (2012). https://doi.org/10.1063/1.3691598

  27. 27.

    Truchly, M., Plecenik, T., Zhitlukhina, E., Belogolovskii, M., Dvoranova, M., Kus, P., Plecenik, A.: Inverse polarity of the resistive switching effect and strong inhomogeneity in nanoscale YBCO-metal contacts. J. Appl. Phys. 120(18), 185302 (2016). https://doi.org/10.1063/1.4967392

  28. 28.

    Schulman, A., Acha, C.: Resistive switching effects on the spatial distribution of phases in metal-complex oxide interfaces. Physica B 407(16), 3147–3149 (2012). https://doi.org/10.1016/j.physb.2011.12.049

  29. 29.

    Schulman, A., Rozenberg, M.J., Acha, C.: Anomalous time relaxation of the nonvolatile resistive state in bipolar resistive-switching oxide-based memories. Phys. Rev. B 86 (10), 104426 (2012). https://doi.org/10.1103/PhysRevB.86.104426

  30. 30.

    Schulman, A., Lanosa, L.F., Acha, C.: Poole-Frenkel effect and variable-range hopping conduction in metal/YBCO resistive switching devices. J. Appl. Phys. 118(4), 044511 (2015). https://doi.org/10.1063/1.4927522

  31. 31.

    Zhang, H.J., Zhang, X.P., Shi, J.P., Tian, H.F., Zhao, Y.G.: Effect of oxygen content and superconductivity on the nonvolatile resistive switching in YBa2Cu3O6+x/Nb-doped SrTiO3 heterojunctions. Appl. Phys. Lett. 94(9), 092111 (2009). https://doi.org/10.1063/1.3095493

  32. 32.

    Tulina, N.A., Rossolenko, A.N., Shmytko, I.M., Ivanov, A.A., Sirotkin, V.V., Borisenko, I.Y., Tulin, V.A.: Properties of percolation channels in planar memristive structures based on epitaxial films of a YBa2Cu3O7−δ high temperature superconductor. Supercond. Sci. Technol. 32(1), 015003 (2018). https://doi.org/10.1088/1361-6668/aae966

  33. 33.

    Jorgensen, J.D., Veal, B.W., Paulikas, A.P., Nowicki, L.J., Crabtree, G.W., Claus, H., Kwok, W.K.: Structural properties of oxygen-deficient YBa2Cu3O7−δ. Phys. Rev. B 41(4), 1863–1877 (1990). https://doi.org/10.1103/PhysRevB.41.1863

  34. 34.

    Celinska, J., McWilliams, C., Paz de Araujo, C., Xue, K.-H.: Material and process optimization of correlated electron random access memories. J. Appl. Phys. 109(9), 091603 (2011). https://doi.org/10.1063/1.3581197

  35. 35.

    Pan, T.-M., Lu, C.-H.: Forming-free resistive switching behavior in Nd2O3, Dy2o3, and Er2O3 films fabricated in full room temperature. Appl. Phys. Lett. 99(11), 113509 (2011). https://doi.org/10.1063/1.3638490

  36. 36.

    Oka, T., Nagaosa, N.: Interfaces of correlated electron systems: Proposed mechanism for colossal electroresistance. Phys. Rev. Lett. 95, 266403 (2005). https://doi.org/10.1103/PhysRevLett.95.266403

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 19-29-03021 mk)

Author information

Correspondence to A. A. Ivanov.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tulina, N.A., Ivanov, A.A. Memristive Properties of Oxide-based High-Temperature Superconductors. J Supercond Nov Magn (2020). https://doi.org/10.1007/s10948-019-05383-3

Download citation

Keywords

  • HTSC
  • Memristor
  • Resistive switching
  • Doping
  • Oxygen vacancies
  • Thin films
  • Heterostructures