Reversible Magnetocaloric Effect of (La0.8Pr0.2)0.67Ba0.33MnO3 from Direct Measurements

  • Selda Kılıç ÇetinEmail author
Original Paper


In this study, magnetic and magnetocaloric properties of (La0.8Pr0.2)0.67Ba0.33MnO3 manganite synthesized by sol-gel method were investigated. Under low magnetic field, temperature-dependent zero-field-cooled, field-cooled, and field-heated measurements were performed and the magnetic phase transition temperature corresponding to the sudden drop in magnetization was determined as 200 K. The magnetic entropy change value of the sample is determined as 2.2 J/kgK in 4.8 T magnetic field from isothermal magnetization curves. The adiabatic temperature change (ΔTad) of the sample was measured directly using an adiabatic calorimeter and measured as 0.72 K with a field change of 3 T. As a result of cyclic measurement of ΔTad, it is observed that the material has a reversible magnetocaloric effect (MCE) during the application and removal of the field 5 times. This reversible MCE property of the material is important in that it is the most desirable property of potential materials to be used in magnetic cooling systems.


Manganites Magnetocaloric effect Magnetic entropy Curie temperature Adiabatic temperature change 



The author would like to thank Professor Mehmet Acet for experimental measurements and Dr. Ahmet Ekicibil for helpful discussion.


  1. 1.
    Maalam, K.E., Balli, M., Habouti, S., Dietze, M., Hamedoun, M., Hlil, E.K., Es-Souni, M., El Kenz, A., Benyoussef, A., Mounkachi, O.: J. Magn. Magn. Mater. 449, 25–32 (2018)ADSCrossRefGoogle Scholar
  2. 2.
    Tishin, A.M., Buschow, K.H. (eds.): Handbook of magnetic materials, vol. 12, pp. 395–524. North-Holland, Amsterdam (1999)Google Scholar
  3. 3.
    Mezaal, N.A., Osintsev, K.V., Zhirgalova, T.B.: IOP Conf. Series: Earth and Environmental Science. 87, 032024 (2017)Google Scholar
  4. 4.
    A. M. Tishin, Y.I. Spichkin, (2003), IOP Publishing LTD.Google Scholar
  5. 5.
    Pecharsky, V.K., Gschneidner Jr., K.A.: J. Magn. Magn. Mater. 200, 44 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    Gschneidner Jr., K.A., Pecharsky, V.K., Tsokol, A.O.: Rep. Prog. Phys. 68, 1479 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    Phan, M.H., Yu, S.C.: J. Magn. Magn. Mater. 308, 325 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    Tegus, O., Bruck, E., Buschow, K.H.J., de Boer, F.R.: Nature. 415, 150 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    Yu, B.F., Gao, Q., Zhang, B., Meng, X.Z., Chen, Z.: Int. J. Refrig. 26, 622–636 (2003)CrossRefGoogle Scholar
  10. 10.
    Zimm, C.B., Jastrab, A., Sternberg, A., Pecharsky, V.K., Gschneidner Jr., K.A.: Adv. Cryog. Eng. 43, 1759–1760 (1998)CrossRefGoogle Scholar
  11. 11.
    Wang, Z., Xu, Q., Zhang, H.: J. Magn. Magn. Mater. 323, 3229–3233 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Phan, M.H., Tian, S.B., Hoang, D.Q., Yu, S.C., Nguyen, C., Ulyanov, A.N., Magn, J.: Magn. Mater. 258-259, 309–311 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    Brown, G.V.: J. Appl. Phys. 47(8), 3673–3680 (1976)ADSCrossRefGoogle Scholar
  14. 14.
    C.B. Zimm, A. Sternberg, A. G. Jastrab, A. M. Boeder, L. M. Lawton, J. J. Chell, US Patent 6.526.759.4 (2003)Google Scholar
  15. 15.
    Pecharsky, V.K., Gschneidner Jr., K.A., Pecharsky, A.O., Tishin, A.M.: Phys. Rev. B. 64, 144406 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    Akça, G., Kılıç Çetin, S., Ekicibil, A.: Ceram. Int. 43, 15811–15820 (2017)CrossRefGoogle Scholar
  17. 17.
    Tocado, L., Palacios, E., Burriel, R.: J. Appl. Phys. 105, 093918 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    Das, S., Amaral, J.S., Amaral, V.S.: J. Phys. D. Appl. Phys. 43, 152002 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Wang, Z., Xu, Q., Ni, G., Zhang, H.: Physica B. 406, 4333–4337 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    Rebello, A., Naik, V.B., Mahendiran, R.: J. Appl. Phys. 110, 013906 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    Mohamed, A.A., Hernando, B.: Phys. Lett. A. 380, 1763–1766 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    Pavan Kumar, N., Lalitha, G., Sagar, E., Venugopal Reddy, P.: Physica B. 457, 275–279 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    Mleiki, A., M’nassri, R., Cheikhrouhou-Koubaa, W., Cheikhrouhou, A., Hlil, E.K., Alloys, J.: Compd. 727, 1203–1212 (2017)CrossRefGoogle Scholar
  24. 24.
    Kılıç Çetin, S., Ekicibil, A.: Çukurova University Journal of the Faculty of Engineering and Architecture. 32-1, 141–145 (2017)Google Scholar
  25. 25.
    Çetin, S.K., Acet, M., Ekicibil, A., Alloys, J.: Compd. 727, 1253–1262 (2017)CrossRefGoogle Scholar
  26. 26.
    Joy, P.A., Kumar, P.S.A., Date, S.K.: J. Phys. Condens. Matter. 10, 11049–11054 (1998)ADSCrossRefGoogle Scholar
  27. 27.
    Çetin, S.K., Acet, M., Ekicibil, A., Sarıkürkçü, C., Kıymaç, K., Alloys, J.: Compd. 565, 139–143 (2013)CrossRefGoogle Scholar
  28. 28.
    Baazaoui, M., Boudard, M., Zemni, S.: Mater. Lett. 65, 2093–2095 (2011)CrossRefGoogle Scholar
  29. 29.
    Banerjee, B.K.: Phys. Lett. 12, 16 (1964)ADSCrossRefGoogle Scholar
  30. 30.
    Das, S., Kavipriya, T., Nirmala, R.: Mater. Res. Express. 6, 084010 (2019)ADSCrossRefGoogle Scholar
  31. 31.
    Arun, B., Athira, M., Akshay, V.R., Sudakshina, B., Mutta, G.R., Vasundhara, M.: J. Magn. Magn. Mater. 448, 322–331 (2018)ADSCrossRefGoogle Scholar
  32. 32.
    Bourouina, M., Krichene, A., Boudjada, N.C., Boujelben, W.: Ceram. Int. 43, 12311–12320 (2017)CrossRefGoogle Scholar
  33. 33.
    Franco, V., Blazguez, J.S., Conde, A.: Appl. Phys. Lett. 89, 222512 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    Bonilla, C.M., Herrero-Albillos, J., Bartolome, F., Garcia, L.M., Parra-Borderias, M., Franco, V.: Phys. Rev. B. 81, 224424 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    Gschneidner Jr., K.A., Pecharsky, V.K.: Annu. Rev. Mater. Sci. 30, 387 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Central Research LaboratoryÇukurova UniversityAdanaTurkey

Personalised recommendations