Magnetic Properties of NiFe2O4 Compound: Ab Initio Calculation and Monte Carlo Simulation

  • L. Idrissi
  • N. TahiriEmail author
  • O. El Bounagui
  • H. Ez-Zahraouy
Original Paper


The structural, electronic, and magnetic properties of the NiFe2O4 compound are studied using several theoretical methods such as first-principle calculations based on density functional theory (DFT), Monte Carlo simulations, and mean-field theory. The exchange-correlation potential was resolved by generalized gradient approximation (GGA) that underestimates the band gap energy value; therefore, this later needed to be corrected using the GGA + U approximation. The gap energy value (1.10 eV) obtained by the theoretical method is in good agreement with experimental value (0.99 eV). Using ab initio calculations, the exchange-coupling interactions are J1 = 40.665 meV, J2 = 45.382 meV, and J3 = −3.260 meV. Moreover, the semiconductor NiFe2O4 compound exhibits a second-order ferromagnetic-paramagnetic phase transition around TC = 844 K; this value is in good agreement with experimental results. The total magnetization, susceptibility, and specific heat of this compound are investigated.


Ab initio calculation GGA + U approximation NiFe2O4 compound Monte Carlo simulations Critical temperature 



  1. 1.
    Shimizu, Y., Kusano, S., Kuwayama, H., Tanaka, K., Egashira, M.: J. Am. Ceram. Soc. 73, 818–824 (1990)CrossRefGoogle Scholar
  2. 2.
    Hochepied, J.F., Bonville, P., Pileni, M.P., Phys, J.: Chem. B. 104, 905–912 (2000)CrossRefGoogle Scholar
  3. 3.
    Nejati, K., Zabihi, R.: Chem. Central J. 6, 23 (2012)CrossRefGoogle Scholar
  4. 4.
    Nakashima, S., Fujita, K., Tanaka, K., Hirao, K., Yamamoto, T., Tanaka, I.: Phys. Rev. B. 75, 174443 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    Dandia, A., Jain, A.K., Sharma, S.: RSC Adv. 3, 2924–2934 (2013)CrossRefGoogle Scholar
  6. 6.
    Kazin, A.P., Rumyantseva, M.N., Prusakov, V.E., Suzdalev, I.P., Maksimov, Y.V., Imshennik, V.K., Novochikhin, S.V., Gaskov, A.M.: Inorg. Mater. 46, 1254–1259 (2010)CrossRefGoogle Scholar
  7. 7.
    Kamble, R.B., Mathe, V.L.: Sensors Actuators B. Chem. 131, 205–209 (2008)CrossRefGoogle Scholar
  8. 8.
    Muraoka, Y., Tabata, H., Kawai, T.: J. Appl. Phys. 88, 7223–7229 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    Evans, B.J., Hafner, S.S., Weber, H.P.: J. Chem. Phys. 55, 5282–5288 (1971)ADSCrossRefGoogle Scholar
  10. 10.
    Szotek, Z., Temmerman, W.M., Ködderitzsch, D., Svane, A., Petit, L., Winter, H.: Phys. Rev. B. 74, 174431 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    Hoppe, M., Doring, S., Gorgoi, M., Cramm, S., Muller, M.: Phys. Rev. B. 91, 054418 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    Ivanov, V.G., Abrashev, M.V., Iliev, M.N., Gospodinov, M.M., Meen, J., Aroyo, M.I.: Phys. Rev. B. 82, 024104 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. B. 136, B864 (1964)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, 1133 (1965)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Slater, J.C.: Statistical exchange-correlation in the self-consistent field. Adv. Quantum Chem. 6, 1 (1972)ADSCrossRefGoogle Scholar
  16. 16.
    P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz, WIEN 2 k: augmented plane wave local orbitals program for calculating crystal properties, Vienna, (2001) Accessed 31 July 2019
  17. 17.
    Perdew, J.P., Burke, K., Ernzerbof, M.: Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  18. 18.
    Monkhorst, H.J., Pack, J.D.: Phys. Rev. B. 13, 5188 (1976)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Daniel Fritsch and Claude Ederer, Physical review B 82, 104117 (2010).Google Scholar
  20. 20.
    Nuala, M.: Caffrey, Daniel Fritsch, Thomas Archer, Stefano Sanvito, and Claude Ederer. Phys. Rev. B. 87, 024419 (2013)CrossRefGoogle Scholar
  21. 21.
    Fritsch, D.: Phys. Rev. B. 86, 014406 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    Fritsch, D., Ederer, C.: Phys. Rev. B. 82, 104117 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: J. Chem. Phys. 21, 1087 (1953)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Condensed Matter and Interdisciplinary Sciences, Faculty of SciencesMohammed V UniversityRabatMorocco
  2. 2.EPHE-MS, Faculty of SciencesMohammed V UniversityRabatMorocco

Personalised recommendations