Copper Mixed Valence Concept: “Cu(I)–Cu(II)” in Thermoelectric Copper Sulfides—an Alternative to “Cu(II)–Cu(III)” in Superconducting Cuprates

  • Bernard RaveauEmail author
Original Paper


The present essay is focused on the role of the Cu(I)–Cu(II) mixed valence for designing thermoelectric sulfides with p-type metal–like properties. A comparison is made with the concept of Cu(II)–Cu(III) mixed valence used for the synthesis of high Tc superconducting cuprates. Attention is drawn on the structural and metal-like conductivity analogy of these thermoelectric sulfides with CuCl, which was previously investigated as a potential superconductor by T. Geballe et al.


Copper mixed valence Cu-based metallic conductors Thermoelectric sulfides Superconducting cuprates 



  1. 1.
    Bednorz, J.G., Müller, K.A.: Z. Phys. B Condensed Matter. 64, 189 (1986)ADSCrossRefGoogle Scholar
  2. 2.
    Provost, J., Studer, F., Michel, C., Raveau, B.: Synth. Met. 4, 147 (1981)CrossRefGoogle Scholar
  3. 3.
    Michel, C., Raveau, B.: Rev. Chim. Mineral. 21, 407 (1984)Google Scholar
  4. 4.
    Michel, C., Er-Rakho, L., Raveau, B.: Mater. Res. Bull. 20, 667 (1985)CrossRefGoogle Scholar
  5. 5.
    Xi, L., Zhang, X., Shi, X.Y., Yang, J., Shi, X., Chen, L.D., Zhang, W., Yang, J., Singh, D.J.: Phys. Rev. B. 86, 155201 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    Shen, Y., Li, C., Huang, R., Tian, R., Ye, Y., Pan, L., Koumoto, K., Zhang, R., Wan, C., Wand, Y.: Nat. Sci. Rep. (2016).
  7. 7.
    Pavan Kumar, V., Barbier, T., Raveau, B., Daou, R., Malaman, B., Le Caër, B.G., Lemoine, P., Guilmeau, E.: J. Phys. Chem. 121, 16454 (2017)Google Scholar
  8. 8.
    Suekuni, K., Kim, F.S., Nishiate, H., Ohta, M., Tanaka, H.I., Takabatake, T.: Appl. Phys. Lett. 105, 132107 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    Kikuchi, Y., Bouyrie, Y., Ohta, M., Suekuni, K., Aihara, M., Takabatake, T.: J. Mater. Chem. A. 4, 15207 (2016)CrossRefGoogle Scholar
  10. 10.
    Bouyrie, Y., Ohta, M., Suekuni, K., Kikuchi, Y., Jood, P., Yamamoto, A., Takabatake, T.: J. Mater. Chem. C. 5, 4174 (2017)CrossRefGoogle Scholar
  11. 11.
    Bourgès, C., Bouyrie, Y., Supka, A.R., Al Rahal Al Orabi, R., Lemoine, P., Lebedev, O.I., Ohta, M., Suekuni, K., Nassif, V., Hardy, V., Daou, R., Miyazaki, Y., Fornari, M., Guilmeau, E.: J. Am. Chem. Soc. 140, 2186 (2018)CrossRefGoogle Scholar
  12. 12.
    Pavan Kumar, V., Supka, A.R., Lemoine, P., Lebedev, O.I., Raveau, B., Suekuni, K., Nassif, V., Al Rahal Al Orabi, R., Fornari, M., Guilmeau, E.: Adv. Energy Mater. 9, 1803249 (2019)CrossRefGoogle Scholar
  13. 13.
    Pavan, Kumar, V., Guélou, G., Lemoine, P., Raveau, B., Supka, A.R., Al Rahal Al Orabi, R., Fornari, M., Suekuni, K., Guilmeau, E.: Angewandte Chem. Internl. (2019). CrossRefGoogle Scholar
  14. 14.
    Chu, C.W., Early, S., Geballe, T.H., Rusakov, A.P., Schwall, R.E.: J. Phys. C. 8, L 241 (1975)ADSCrossRefGoogle Scholar
  15. 15.
    Chu, C.W., Early, S., Geballe, T.H., Huang, C.Y.: J. of Less Common Metals. 62, 463 (1978)CrossRefGoogle Scholar
  16. 16.
    Chu, C.W., Rusakov, A.P., Huang, S., Early, S., Geballe, T.H., Huang, C.Y.: Phys. Rev. B. 18, 2116 (1978)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.UMR 6508 CNRS-ENSICAENUniversité de CaenCaenFrance

Personalised recommendations