Self-Doping Effect in FeSe Superconductor by Pressure-Induced Charge Transfer

  • Rui Zhang
  • Peifeng Gao
  • Xingzhe WangEmail author
  • Gianluca De Marzi
Original Paper


Several unambiguous experimental observations clearly showed that the critical temperature of FeSe superconductor depends significantly on the microstructure. Experiments also showed that the critical temperature can be greatly enhanced by the application of external pressure. The present paper deals with the effect of pressure on charge transfer and self-doping properties of the superconducting compound FeSe, based on the investigation of the pressure dependence of the Fermi surface by means of first-principles methods. From the numerically evaluated electronic and crystalline properties, the pressure-induced modifications of the FeSe Fermi surface’s topology are determined. The Luttinger theorem was also used to evaluate the carrier concentration on the Fe atomic sites from the evolution of the Fermi surface. We have found that the electronic density at the Fe sites increases with the increase in external pressure, following the distortion of Fermi surface. Our simulations reveal that the pressure-induced charge transfer from Se atoms to Fe atoms in the FeSe superconductor can be interpreted as a direct correlation between the electron carrier concentration and the applied pressure. The pressure dependence of superconducting properties of FeSe can be reasonably ascribed to a self-doping effect. The predictions about the electronic density on the Fe sites (reaching a value of 0.1, where the corresponding pressure is about 8.6 GPa) are in good agreement with experimental data available in literature. The interpretation of the pressure-induced Tc enhancement in FeSe caused by the electron transfer and self-doping effect is carried out, which can be the correct approach to explain the Tc behavior under a wide type of mechanical loading.


Superconductor FeSe Applied pressure Charge transfer Self-doping effect 


Funding Information

The work was supported by the National Natural Science Foundation of China (11672120, 11327802, 11421062), the China Postdoctoral Science Foundation (2018 M633604), the Fundamental Research Funds for the Central Universities (lzujbky-2018-it27, lzujbky-2018-it01) and the Chinese Top University Graduate Students Studying Abroad Program (No.201806180042 to Rui Zhang).


  1. 1.
    Kamihara, Y., Watanabe, T., Hirano, M., Hosono, H.: J. Am. Chem. Soc. 130, 3296 (2008)CrossRefGoogle Scholar
  2. 2.
    Krzton-Maziopa, A., Shermadini, Z., Pomjakushina, E., Pomjakushin, V., Bendele, M., Amato, A., Khasanov, R., Luetkens, H., Conder, K.: J. Phys. Condens. Matter. 23, 052203 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    Xu, H.S., Wang, X.X., Gao, Z., Huang, H.L., Long, Y.Z., Lu, Y.L., Tang, K.B., Alloys, J.: Compd. 735, 2053–2057 (2018)CrossRefGoogle Scholar
  4. 4.
    Hsu, F.C., Luo, J.Y., Yeh, K.W., Chen, T.K., Huang, T.W., Wu, P.M., Lee, Y.C., Huang, Y.L., Chu, Y.Y., Yan, D.C., Wu, M.K.: Proc. Natl. Acad. Sci. U. S. A. 105, 14262 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    Baek, S.H., Efremov, D.V., Ok, J.M., Kim, J.S., van den Brink, J., Büchner, B.: Nat. Mater. 14, 210 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    Margadonna, S., Takabayashi, Y., Ohishi, Y., Mizuguchi, Y., Takano, Y., Kagayama, T., Nakagawa, T., Takata, M., Prassides, K.: Phys. Rev. B. 80, 064506 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    Okabe, H., Takeshita, N., Horigane, K., Muranaka, T., Akimitsu, J.: Phys. Rev. B. 81, 205119 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    Medvedev, S., McQueen, T., Troyan, I.A., Palasyuk, T., Eremets, M.I., Cava, R.J., Naghavi, S., Casper, F., Ksenofontov, V., Wortmann, G., Felser, C.: Nat. Mater. 8, 630 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    Lucas, M.B., Free, D.G., Sedlmaier, S.J., Wright, J.D., Cassidy, S.J., Hara, Y., Corkett, A.J., Lancaster, T., Baker, P.J., Blundell, S.J., Clarke, S.J.: Nat. Mater. 12, 15 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    Ge, J., Liu, Z., Liu, C., Gao, C., Qian, D., Xue, Q., Liu, Y., Jia, J.: Nat. Mater. 14, 285 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    Chen, X., Dai, P., Feng, D., Xiang, T., Zhang, F.C.: Natl. Sci. Rev. 3, 371 (2014)CrossRefGoogle Scholar
  12. 12.
    Winiarski, M., Czekala, M., Ciechan, A.: J. Alloys Compd. 566, 187 (2013)CrossRefGoogle Scholar
  13. 13.
    Norman, M.R.: Physics. 3, 86 (2010)CrossRefGoogle Scholar
  14. 14.
    Reiss, P., Reiss, P., Watson, M., Kim, T., Haghighirad, A., Woodruff, D., Bruma, M., Clarke, S., Coldea, A.: Phys. Rev. B. 96, 121103 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    He, S., He, J., Zhang, W., Zhao, L., Ou, Y., Wang, Q., Li, Z., Wang, L., Peng, Y., Liu, Y., Chen, C., Yu, L., Liu, G., Dong, X., Zhang, J., Chen, C., Xu, Z., Chen, X., Ma, X., Xue, Q., Zhou, X.J.: Nat. Mater. 12, 605 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    Miyata, Y., Nakayama, K., Sugawara, K., Sato, T., Takahashi, T.: Nat. Mater. 12, 775 (2013)Google Scholar
  17. 17.
    Sefat, A.S.: Rep. Prog. Phys. 74, 124502 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    Gao, P., Zhang, R., Wang, X.: AIP Adv. 7, 035215 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    Zignani, C.F., Corato, V., Leo, A., De Marzi, G., Mancini, A., Takano, Y., Yamashita, A., Polichetti, M., Galluzzi, A., Rufoloni, A., Grimaldi, G., Pace, S.: IEEE T. Appl. Supercond. 26, 7400105 (2016)Google Scholar
  20. 20.
    Schuster, W., Milker, H., Komarek, K.L.: Monatsh. Chem. 110, 1153 (1979)CrossRefGoogle Scholar
  21. 21.
    Winiarski, M., Samsel-Czekala, M., Ciechan, A.: Europhys. Lett. 100, 47005 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    Segall, M., Lindan, P., Probert, M., Pickard, C., Hasnip, P., Clark, S., Payne, M.: J. Phys. Condens. Matter. 14, 2717 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    Milman, V., Winkler, B., White, J., Pickard, C., Payne, M., Akhmatskaya, E., Nobes, R.: Int. J. Quantum Chem. 77, 895 (2000)CrossRefGoogle Scholar
  24. 24.
    Vanderbilt, D.: Phys. Rev. B. 41, 7892 (1990)ADSCrossRefGoogle Scholar
  25. 25.
    Mizuguchi, Y., Hara, Y., Deguchi, K., Tsuda, S., Yamaguchi, T., Takeda, K., Kotegawa, H., Tou, H., Takano, Y.: Supercond. Sci. Technol. 23, 054013 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    Lee, C.H., Kihou, K., Iyo, A., Kito, H., Shirage, P.M., Eisaki, H.: Solid State Commun. 152, 644 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    Gunasekaran, S., Kumaresan, S., Arunbalaji, R., Anand, G., Srinivasan, S.: J. Chem. Sci. 120, 315 (2008)CrossRefGoogle Scholar
  28. 28.
    Chong, X., Jiang, Y., Feng, J.: J. Alloys Compd. 745, 196 (2018)CrossRefGoogle Scholar
  29. 29.
    Luttinger, J.M.: Phys. Rev. 119, 1153 (1960)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Kumar, R., Zhang, Y., Sinogeikin, S., Xiao, Y., Kumar, S., Chow, P., Cornelius, A.L., Chen, C.: J. Phys. Chem. B. 114, 12597 (2010)CrossRefGoogle Scholar
  31. 31.
    Lu, H., Wang, N., Wei, M., Chen, S., Yang, Y., Shao, D., Lu, W.: J. Low Temp. Phys. 178, 355 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    Terashima, K., Sekiba, Y., Bowen, J., Nakayama, K., Kawahara, T., Sato, T., Richard, P., Xu, Y., Li, L., Cao, G., Xu, Z., Ding, H., Takahashi, T.: Proc. Natl. Acad. Sci. U. S. A. 106, 7330 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    Leyraud, N., Proust, C., LeBoeuf, D., Levallois, J., Bonnemaison, J., Liang, R., Bonn, D., Hardy, W., Taillefer, L.: Nature. 447, 565 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    Song, C., Zhang, H., Zhong, Y., Hu, X., Ji, S., Wang, L., He, K., Ma, X., Xue, Q.: Phys. Rev. Lett. 116, 157001 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    Lee, P.A., Nagaosa, N., Wen, X.G.: Rev. Mod. Phys. 78, 17 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    Mazin, I.I.: Nat. Mater. 14, 755 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Rui Zhang
    • 1
  • Peifeng Gao
    • 1
  • Xingzhe Wang
    • 1
    Email author
  • Gianluca De Marzi
    • 2
  1. 1.Key Laboratory of Mechanics on Western Disaster and Environment, Ministry of Education, College of Civil Engineering and MechanicLanzhou UniversityLanzhouPeople’s Republic of China
  2. 2.ENEA, FSN-Superconductivity LaboratoryFrascatiItaly

Personalised recommendations