Advertisement

Micron-Sized Constrictions Fabricated Using the Femtosecond Laser Technique on YBCO Thin Films

  • Patrice UmenneEmail author
Original Paper
  • 48 Downloads

Abstract

In this paper, I report on the fabrication of micron-sized constrictions in YBCO thin films using the femtosecond laser technique. The constrictions are S-shaped superconducting weak links fabricated on YBCO thin films. The constrictions show a measurable superconducting current flowing through them. Current-voltage (I–V) characteristics were used to determine the critical current IC of the constrictions at 77 K. The width of the constrictions was determined at the narrowest point using SEM (scanning electron microscope). Three micron-sized constrictions were fabricated with a width of 2.88 μm, 1.72 μm, and 1.69 μm and a length of 5 μm. Based on the width and length of these constrictions in relation to the coherence length (ξ) of the YBCO, these constrictions should conduct supercurrent by Abrikosov vortices. The SEM images show that the femtosecond laser heats the samples beyond the geometric boundary, damaging some of the superconductive phases of the YBCO constrictions. As a result, the constrictions conduct current by one-dimensional depairing.

Keywords

Abrikosov vortices Atomic force microscope (AFM) Critical currents Flux pinning Lasers Scanning electron microscopy (SEM) YBCO thin film 

Notes

Acknowledgments

I would like to acknowledge the support of the UNISA superconductivity research chair in the funding of this project.

References

  1. 1.
    Bozbey, A.: M.Sc Thesis. Bilkent University, Turkey (2003)Google Scholar
  2. 2.
    Mérel, P., Laou, P., Wong, F.: Technical memorandum (DRDC Valcartier TM 2006-496) (2009)Google Scholar
  3. 3.
    Lindgren, M., Currie, M., Williams, C.A., Hsiang, T.Y., Fauchet, P.M., Sobolewski, 3 R., Moffat, S.H., Hughes, R.A., Preston, T.S., Hegmann, F.A.: IEEE J. Sel. Top. Quantum Electron. 2, 668 (1996)Google Scholar
  4. 4.
    Chen, H.Z., Chow, T.C., Hong, M.T., Lin, T.L., Lin, K.S., Cheng, Y.F., Chen, Y.C., Chou, H.: Physica C: Supercond. 274, 24 (1997)Google Scholar
  5. 5.
    Karasik, B.S., Sergeev, A.V., Prober, D.E.: IEEE Trans. Terahertz Sci. Technol. 1, 97 (2011)Google Scholar
  6. 6.
    Kamper, R.A.: IMTC-88. 5th IEEE instrumentation and measurement technology conference (1988)Google Scholar
  7. 7.
    Fernandez, J.A.L., Osorio, M.R., Veira, J.A., Vidal, F.: Supercond. Sci. Technol. 22, 025009 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    Ilin, K.S and Siegel, M.: J. Appl. Phys. 92, 361 (2002)Google Scholar
  9. 9.
    Hu, Q., Richards, P.L.: Appl. Phys. Lett. 55, 2444 (1989)ADSCrossRefGoogle Scholar
  10. 10.
    Umenne, P., Srinivasu, V.V.: J. Mater. Sci: Mater. Electron. 28, 5817 (2017)Google Scholar
  11. 11.
    Taylor, B. N.: 6th IEEE conference record instrumentation and measurement technology conference (1989)Google Scholar
  12. 12.
    Kornilovich, A. A., Loseva, N. F.: 4th International conference on actual problems of electronic instrument engineering proceedings. APEIE-98 (1998)Google Scholar
  13. 13.
    Tang, Y., Steiner, R., Sims, J.: IEEE Trans. Inst. Meas. 48, 262 (1999)CrossRefGoogle Scholar
  14. 14.
    Honghui, L., Zengmin, W., Wenhui, C., Yuan, G.: 13th IEEE international conference on electronic measurement and instruments ICEMI (2017)Google Scholar
  15. 15.
    Likharev, K.K.: Rev. Mod. Phys. 51, 101 (1979)ADSCrossRefGoogle Scholar
  16. 16.
    Papari, G., Carillo, F., Stornaiuolo, D., Longobardi, L., Beltram, F., Tafuri, F.: Supercond. Sci. Technol. 25, 035011 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    Mass, N., Ilzycer, D., Deutsher, G., Desgadin, G., Monot, I., Weger, M.: J. Spercond. 5, 191 (1992)Google Scholar
  18. 18.
    Elkaseh, A.A.O., Srinivasu, V.V., Perold, W.J.: IEEE Trans. Appl. Supercond. 19, 187 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    Wolf, E.L.: IEEE Instrum. Meas. Mag. 13, 28 (2010)CrossRefGoogle Scholar
  20. 20.
    Khusnutdinov, R., Firsov, N. I., Novikov, I. L. 5th International conference on actual problems of electronic instrument engineering proceedings. APEIE (2000)Google Scholar
  21. 21.
    Grehn, M., et al.: Opt. Mater. Express. 4, 689 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    korte, F., et al.: Appl. Phys. A. 77, 229 (2003)ADSGoogle Scholar
  23. 23.
    Radchenko, S., Volstretsov, A., Koltakova, A., Pitsun, D. XIV International scientific-technical conference on actual problems of electronics instrument engineering (APEIE). (2018)Google Scholar
  24. 24.
    buttner, U., Hardie, G.L., Rossouw, R., Srinivasu, V.V., Perold, W.J.: Supercond. Sci. Technol. J. 20, S426 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    Irmer, B., Blick, R.H., Simmel, F., Godel, W., Lorenz, H., Kottaus, J.P.: Appl. Phys. Lett. 73, 2051 (1998)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical and Mining EngineeringUniversity of South Africa, FloridaJohannesburgSouth Africa

Personalised recommendations