Advertisement

Impact of Mg2+ Ion on the Structural, Morphological, Optical, Vibrational, and Magnetic Behavior of Mg:ZnAl2O4 Spinel

  • S. Yuvaraj
  • S. Ramachandran
  • A. Subramani
  • A. Thamilselvan
  • S. Venkatesan
  • M. SundararajanEmail author
  • Chandra Sekhar Dash
Original Paper
  • 24 Downloads

Abstract

In this work, Magnesium-doped zinc aluminate nanoparticles are synthesized using microwave combustion technique by employing L-alanine as fuel. The incorporation of Mg2+ ions plays a pivotal role in influencing the optical, structural, and magnetic properties of zinc aluminate nanoparticles. The synthesized nanoparticle are characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), high-resolution scanning electron microscopy (HR-SEM), energy dispersive X-ray analysis (EDX), diffuse reflectance spectroscopy (DRS), and vibrating sample magnetometer (VSM).The XRD patterns confirmed the formation of single-phase cubic spinel structure of ZnAl2O4 (gahnite). The average crystallite sizes estimated from Debye-Scherrer is found to be in the range of 6 to 12 nm. HR-SEM images revealed the spherical morphology with uniform distributions. The optical bandgap of the synthesized nanoparticles is found to be in the range of 5.45 eV–5.76 eV. Magnetic measurement reveals that pure and doped zinc aluminate nanoparticles have superparamagnetic nature. These obtained results of Zn1-xMgxAl2O4 (0 ≤ x ≤ 0.5) are found to be well suited for optoelectronics, magnetic, and catalytic applications.

Keywords

ZnAl2O4 spinel Spherical morphology Optical bandgap Superparamagnetism 

Notes

References

  1. 1.
    Vasile, M., Vlazan, P., Bucur, A., Sfirloaga, P., Grozescu, I.: Optoelectro Advan Mater Rapid Comm. 4, 220–222 (2010)Google Scholar
  2. 2.
    Wook, J.Y., Choi, J., Cheon, J.: Angewant. Chem. Inter. Edition. 45, 3414–3439 (2006)CrossRefGoogle Scholar
  3. 3.
    Stringhini, F.M., Foletto, E.L., Sallet, D., Betruol, D.A., Filho, O.C.: J Alloys Compd. 588, 305–309 (2014)CrossRefGoogle Scholar
  4. 4.
    Katz, R.N.: High Tech Ceramics, Ed. P. Vincenzini. 145–161 (1987)Google Scholar
  5. 5.
    Duan, X.L., Yu, D.R., F.P.:Inorg. Chem. 50, 5460-5467 (2011).CrossRefGoogle Scholar
  6. 6.
    Ianos, R., Lazau, R.: Chem Eng J. 240, 260–263 (2014)CrossRefGoogle Scholar
  7. 7.
    Wrzyszcz, J., Zawadzki, M., Trawczynski, J., Grabowska, H., Mista: W Apepl Catalysis: Gen. 210, 263–269 (2001)CrossRefGoogle Scholar
  8. 8.
    Mehdi, R., Niasari, M.S., Mostafa, S., Mashkani, H.J.: Ino Org Poly Mater. 22, 1093–1100 (2012)CrossRefGoogle Scholar
  9. 9.
    Kant, R., Ghose, R.: Ceram. Inter. 40, 3209–3214 (2014)CrossRefGoogle Scholar
  10. 10.
    Michael, V.: Mater. Sci. Forum. 343, 531–538 (2000)Google Scholar
  11. 11.
    Debasmita, D., Murugesan, C., Leskes, M., Barpanda, P.: Mater Res Bull. 98, 219–224 (2018)CrossRefGoogle Scholar
  12. 12.
    Adak, A.K., Pathak, A., Pramanik, P.: J Mater Sci Lett. 17, 559–561 (1998)CrossRefGoogle Scholar
  13. 13.
    Sumathi, S., Kavipriya, A.: Solid State Sci. 65, 52–60 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    Wiktoria, S., Zawadzki, M., Okal, J.: J Alloys Compd. 492, 500–507 (2010)CrossRefGoogle Scholar
  15. 15.
    Zawadzki, M.: Solid State Sci. 8, 14–18 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    Ragupathi, C., Kennedy, L.J., Vijaya, J.J.: Advance. Pow. Tech. 25, 267–273 (2014)CrossRefGoogle Scholar
  17. 17.
    Kirankumar, Savunthari, V., Sumathi, S.: Mater. Res. Bull. 93, 74–82 (2017)CrossRefGoogle Scholar
  18. 18.
    Shanmugam, S., Kavipriya, A.: Solid State Sci. 65, 52–60 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    Sun, T., Chang, Y., Huang, B., Pan, B.: Ceram Int. 39, 3691–3697 (2013)CrossRefGoogle Scholar
  20. 20.
    Belding, J.H., Letzgus E.A.: US Patent 3 950 504, 13 April 1976.Google Scholar
  21. 21.
    Pascal, M., Belser, U.: Ceramic. Inter. J. Pros. 10, (1997)Google Scholar
  22. 22.
    Kingery, W.D., Bowen, H.K., Uhlmann, D.R.: Introduction to ceramics, New York. Wiley. 656–667 (1976)Google Scholar
  23. 23.
    Cranmer, D.C.: Introduction to glasses and ceramics, Materials Park. ASM Inter. 4, 18 (1991)Google Scholar
  24. 24.
    Guang, L.J., Ikegami, T., Lee, J., Mori, T.: J Amer Ceram Soc. 83, 2866–2868 (2000)Google Scholar
  25. 25.
    Lavat, A.E., Grasselli, M.C., Lovecchio, E.G.: Ceram Int. 36, 15–21 (2010)CrossRefGoogle Scholar
  26. 26.
    Esposito, L., Piancastelli, A., Miceli, P., Martelli, S.: J Eur Ceram Soc. 35, 651–661 (2015)CrossRefGoogle Scholar
  27. 27.
    Omkaram, I., VengalaRao, B., Buddhudu, S.: J Alloys Compd. 474, 565–568 (2009)CrossRefGoogle Scholar
  28. 28.
    Shahmirzaee, M., ShafieeAfarani, M., Iran Nejhad, A., Arabi, A.M.: Particul. Sci. Technol. 37(1), 110–117 (2019)CrossRefGoogle Scholar
  29. 29.
    Anand, G.T., Kennedy, L.J., Aruldoss, U., Vijaya, J.J.: J Mol Struct. 1084, 244–253 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    Wang, S.F., Sun, G.Z., Fang, L.M., Lei, L., Xiang, X., Zu, X.T.: Sci Rep. 5, 12849 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    Yuvaraj, S., Manikandan, N., Vinitha, G.: Opt Mater. 73, 428–436 (2017)ADSCrossRefGoogle Scholar
  32. 32.
    Xiuhua, W., Chen, D.: Mater Lett. 60, 823–827 (2006)CrossRefGoogle Scholar
  33. 33.
    Sundararajan, M., Sakthivel, P., Fernandez, A.C.: J Alloys Compd. 768, 553–562 (2018)CrossRefGoogle Scholar
  34. 34.
    Yuvaraj, S., Manikandan, N., Vinitha, G.: Ceram Int. 44, 22592–22600 (2018)CrossRefGoogle Scholar
  35. 35.
    Ahmed, A., Singla, M.L., Tabassum, S., Naqvi, A.H., Azam, A.: J. Lumin. 131, 1–6 (2011)CrossRefGoogle Scholar
  36. 36.
    Muhammad Abdul, E., Sakthi, K., Anantharaman, M.R.: Bull Mater Sci. 34, 251–259 (2011)CrossRefGoogle Scholar
  37. 37.
    Robert, I., Lazau, R., Lazau, I., Pacurariu, C.: J Eur Ceram Soc. 32, 1605–1611 (2012)CrossRefGoogle Scholar
  38. 38.
    Preudhomme, J., Tarte, P.: Spectrochim. Acta Part A: Mol. Spectro. 27, 961–968 (1971)ADSCrossRefGoogle Scholar
  39. 39.
    Abdul, E.M., Sakthi, K., Anantharaman, M.R.: Bull Mater Sci. 34, 251–259 (2011)CrossRefGoogle Scholar
  40. 40.
    Eryong, N., Donglai, L., Yunsen, Z., Xue, B., Liang, Y., Youn, J., Zhifeng, J., Song, S.X.: Appl Surf Sci. 257, 8762–8766 (2011)ADSCrossRefGoogle Scholar
  41. 41.
    Dietrich, S., Chandra, S., Georgi, C., Thomas, S., Makarov, D., Schulze, S., Hietschold, M., Albrecht, M., Bahadur, D., Lang, H.: Mater Chem Phys. 132, 292–299 (2012)CrossRefGoogle Scholar
  42. 42.
    Koseoglu, Y., Baykal, A., Toprak, M.S., Gozuak, F., Baskaran, A.C., Aktas, B.: J. Alloys Compd. 462, 209–213 (2008)CrossRefGoogle Scholar
  43. 43.
    Angermann, A., Topfer, J., Silva, K.L., Becker, K.D.: J Alloys Compd. 508, 433–439 (2010)CrossRefGoogle Scholar
  44. 44.
    Talebi, R.: J Mater Sci-Mater El. 27(6), 5665–5669 (2016)CrossRefGoogle Scholar
  45. 45.
    Ragupathi, C., Vijaya, J.J., Kennedy, L.J., Bououdina, M.: Ceram Int. 40(8), 13067–13074 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsPaavai College of EngineeringNamakkalIndia
  2. 2.Department of PhysicsArignar Anna College (Arts & Science)KrishnagiriIndia
  3. 3.Department of ChemistryApollo Arts and Science CollegeChennaiIndia
  4. 4.Electro-Organic DivisionCSIR-Central Electrochemical Research InstituteKaraikudiIndia
  5. 5.PG and Research Department of PhysicsPaavendhar College of Arts & ScienceSalemIndia
  6. 6.Department of Electronics and Communication EngineeringCenturion University of Technology and ManagementBhubaneswarIndia

Personalised recommendations