Highly Isotropic In-plane Upper Critical Field in the Anisotropic s-Wave Superconductor 2H-NbSe2

  • Syuma YasuzukaEmail author
  • Shinya Uji
  • Shiori Sugiura
  • Taichi Terashima
  • Yoshio Nogami
  • Koichi Ichimura
  • Satoshi Tanda
Original Paper


Resistivity measurements for a layered transition metal dichalcogenide 2H-NbSe2 were performed to investigate the in-plane anisotropy of the upper critical field (Hc2) for magnetic fields up to 14.5 T at temperatures down to 2.0 K. For fields rotated within the basal plane, the in-plane anisotropy of a characteristic field H (defined as the field strength at which the resistivity reaches zero) showed twofold symmetry at low temperatures. On the basis of this result, the in-plane anisotropy of Hc2 and the superconducting gap structure in 2H-NbSe2 are discussed.


2H-NbSe2 Upper critical field Anisotropic s-wave superconductivity Superconducting gap 



The authors thank T. Konoike for useful discussion and experimental supports.


  1. 1.
    Revolinski, E., Brown, B.E., Beerntsen, D., Armitage, C.H.: The selenide and telluride systems of niobium and tantalum. J. Less-Common Met., 863 (1965)Google Scholar
  2. 2.
    Straub, T. h., Finteis, T. h., Claessen, R., Steiner, P., Hüfner, S., Blaha, P., Oglesby, C.S., Bucher, E.: Charge-density-wave mechanism in 2H−NbSe2: photoemission results. Phys. Rev. Lett. 82, 4504 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    Yokoya, T., Kiss, T., Chainani, A., Shin, S., Nohara, M., Takagi, H.: Fermi surface sheet-dependent superconductivity in 2H-NbSe2. Science 294, 2518 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    Valla, T., Fedorov, A.V., Johnson, P.D., Glans, P. -A., McGuinness, C., Smith, K.E., Andrei, E.Y., Berger, H.: Quasiparticle spectra, charge-density waves, superconductivity, and electron-phonon coupling in 2H-NbSe2. Phys. Rev. Lett. 92, 086401 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    Berthier, C., Molinié, P., Jérome, D.: Evidence for a connection between charge density waves and the pressure enhancement of superconductivity in 2H-NbSe2. Solid State Commun. 18, 1393 (1976)ADSCrossRefGoogle Scholar
  6. 6.
    Neto, A.H.C.: Charge density wave, superconductivity, and anomalous metallic behavior in 2D transition metal dichalcogenides. Phys. Rev. Lett. 86, 4382 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    Inosov, D.S., Zabolotnyy, V.B., Evtushinsky, D.V., Kordyuk, A.A., Büchner, B., Follath, R., Berger, H., Borisenko, S.V.: Fermi surface nesting in several transition metal dichalcogenides. J. Phys. 10, 125027 (2008)Google Scholar
  8. 8.
    Moncton, D.E., Axe, J.D., DiSalvo, F.J.: Study of superlattice formation in 2H-NbSe2 and 2H-TaSe2 by neutron scattering. Phys. Rev. Lett. 34, 734 (1975)ADSCrossRefGoogle Scholar
  9. 9.
    Harper, J.M.E., Geballe, T.H., DiSalvo, F.J.: Heat capacity of 2H-NbSe2 at the charge density wave transition. Phys. Lett. 54A, 27 (1975)ADSCrossRefGoogle Scholar
  10. 10.
    Corcoran, R., Meeson, P., Onuki, Y., Probst, P. -A., Springford, M., Takita, K., Harima, H., Guo, G.Y., Gyorffy, B.L.: Quantum oscillations in the mixed state of the type II superconductor 2H-NbSe2. J. Phys. Condens. Matter 6, 4479 (1994)ADSCrossRefGoogle Scholar
  11. 11.
    Hess, H.F., Robinson, R.B., Waszczak, J.V.: Vortex-core structure observed with a scanning tunneling microscope. Phys. Rev. Lett. 64, 2711 (1990)ADSCrossRefGoogle Scholar
  12. 12.
    Huang, C.L., Lin, J. -Y., Chang, Y.T., Sun, C.P., Shen, H.Y., Chou, C.C., Berger, H., Lee, T.K., Yang, H.D.: Experimental evidence for a two-gap structure of superconducting NbSe2: a specific-heat study in external magnetic fields. Phys. Rev. B 76, 212504 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    Jing, Y., Lei, S., Yue, W., Zhi-Li, X., Hai-Hu, W.: Quasiparticle density of states of 2H-NbSe2 single crystals revealed by low-temperature specific heat measurements according to a two-component model. Chin. Phys. B 17, 2229 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    Boaknin, E., Tanatar, M.A., Paglione, J., Hawthorn, D., Ronning, F., Hill, R.W., Sutherland, M., Taillefer, L., Sonier, J., Hayden, S.M., Brill, J.W.: Heat conduction in the vortex state of NbSe2: evidence for multiband superconductivity. Phys. Rev. Lett. 90, 117003 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    Fletcher, J.D., Carrington, A., Diener, P., Rodière, P., Brison, P., Prozorov, R., Olheiser, T., Giannetta, R.W.: Penetration depth study of superconducting gap structure of 2H-NbSe2. Phys. Rev. Lett. 98, 057003 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    Rodrigo, J.G., Vieira, S.: STM study of multiband superconductivity in NbSe2 using a superconducting tip. Phys. C 404, 306 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    Noat, Y., Cren, T., Debontridder, F., Roditchev, D., Sacks, W., Toulemonde, P., Miguel, A.: San: Signatures of multigap superconductivity in tunneling spectroscopy. Phys. Rev. B 82, 014531 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    Kiss, T., Yokoya, T., Chainani, A., Hanaguri, T., Nohara, M., Takagi, H.: Charge-order-maximized momentum dependent superconductivity. Nat. Phys. 3, 720 (2007)CrossRefGoogle Scholar
  19. 19.
    Rahn, D.J., Hellmann, S., Kalläne, M., Sohrt, C., Kim, T., Kipp, K.L., Rossnagel, K.: Gaps and kinks in the electronic structure of the superconductor 2H-NbSe2 from angle-resolved photoemission at 1 K. Phys. Rev. B 85, 224532 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    Takanaka, K., Kuboya, K.: Anisotropy of upper critical field and pairing symmetry. Phys. Rev. Lett. 75, 323 (1995)ADSCrossRefGoogle Scholar
  21. 21.
    Won, H., Maki, K.: Fourfold symmetry of vortex state of d-wave superconductivity and torque magnetometry. Europhys. Lett. 34, 453 (1996)ADSCrossRefGoogle Scholar
  22. 22.
    Yasuzuka, S., Uji, S., Terashima, T., Sugii, K., Isono, T., Iida, Y., Schlueter, J.A.: In-plane anisotropy of upper critical field and flux-flow resistivity in layered organic superconductor \({\beta }^{\prime \prime }\)-(ET)2SF 5CH 2CF 2SO 3. J. Phys. Soc. Jpn. 84, 094709 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    Yasuzuka, S., Koga, H., Yamamura, Y., Saito, K., Uji, S., Terashima, T., Akutsu, H., Yamada, J.: Dimensional crossover and its interplay with in-plane anisotropy of upper critical field in β-(BDA-TTP)2SbF6. J. Phys. Soc. Jpn. 86, 084704 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    Metltushko, V., Welp, U., Koshelev, A., Aranson, I., Crabtree, G.W., Canfield, P.C.: Anisotropic upper critical field of LuNi2B 2C. Phys. Rev. Lett. 79, 1738 (1997)ADSCrossRefGoogle Scholar
  25. 25.
    Wang, G.F., Maki, K.: Possible d-wave superconductivity in borocarbides: upper critical field of YNi2B 2C and LuNi2B 2C. Phys. Rev. B 58, 6493 (1998)ADSCrossRefGoogle Scholar
  26. 26.
    Toyota, N., Nakatsuji, H., Noto, K., Hoshi, A., Kobayashi, N., Muto, Y., Onodera, Y.: Temperature and angular dependences of upper critical fields for the layer structure superconductor 2H-NbSe2. J. Low Temp. Phys. 25, 485 (1976)ADSCrossRefGoogle Scholar
  27. 27.
    Naito, M., Tanaka, S.: Electrical transport properties in 2H-NbS2, -NbSe2, -TaS2, and -TaSe2. J. Phys. Soc. Jpn. 51, 219 (1982)ADSCrossRefGoogle Scholar
  28. 28.
    Nader, A., Monceau, P.: Critical field of 2H-NbSe2 down to 50 mK. SpringerPlus 3, 16 (2014)CrossRefGoogle Scholar
  29. 29.
    Morris, R.C., Coleman, R.V., Bhandari, R.: Superconductivity and magnetoresistance in NbSe2. Phys. Rev. B 5, 895 (1972)ADSCrossRefGoogle Scholar
  30. 30.
    Huebener, R.P.: Motion of magnetic flux structures. In: Gray, K.E. (ed.) Nonequilibrium Superconductivity, Phonon, and Kapitza Boundaries. NATO ASI Series. Plenum, New York (1981)CrossRefGoogle Scholar
  31. 31.
    Shimojo, Y., Ishiguro, T., Tanatar, M.A., Kovalev, A.E., Yamochi, H., Saito, G.: Superconducting state of the layered conductor α-(BEDT-TTF)2NH4Hg(SCN)4 in magnetic fields parallel to the layer plane. J. Phys. Soc. Jpn. 71, 2240 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    Kwok, W.K., Welp, U., Crabtree, G.W., Vandervoot, K.G., Hulscher, R., Liu, J.Z.: Direct observation of dissipative flux motion and pinning by twin boundaries in YBa2Cu3O 7−δ single crystals. Phys. Rev. Lett. 64, 966 (1990)ADSCrossRefGoogle Scholar
  33. 33.
    Ikeda, R.: Describing fluctuations in the vortex liquid regime. J. Phys. Soc. Jpn. 64, 1683 (1995)ADSCrossRefGoogle Scholar
  34. 34.
    Burlachkov, L.I.: Upper critical field H c2 in heavy-fermion superconductors. Sov. Phys. JETP 62, 800 (1986)Google Scholar
  35. 35.
    Mineev, V.P., Samokhin, K.: Introduction to Unconventional Superconductivity. Gordon and Breach Science Publishers, Amsterdam (1999)Google Scholar
  36. 36.
    Skokan, M.R., Moulton, W.G., Morris, R.C.: Normal and superconducting properties of CsxWO3. Phys. Rev. B 20, 3670 (1979)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Syuma Yasuzuka
    • 1
    Email author
  • Shinya Uji
    • 2
  • Shiori Sugiura
    • 2
    • 5
  • Taichi Terashima
    • 2
  • Yoshio Nogami
    • 3
  • Koichi Ichimura
    • 4
  • Satoshi Tanda
    • 4
  1. 1.Research Center for Condensed Matter PhysicsHiroshima Institute of TechnologyHiroshimaJapan
  2. 2.National Institute for Materials ScienceTsukubaJapan
  3. 3.Department of PhysicsOkayama UniversityOkayamaJapan
  4. 4.Department of Applied PhysicsHokkaido UniversityKita-ku SapporoJapan
  5. 5.Institute for Materials ResearchTohoku UniversitySendaiJapan

Personalised recommendations