Advertisement

Tunable Wave-Vector Filtering Effect for Electrons in a Magnetically and Electrically Confined Semiconductor Heterostructure with a δ-Doping

  • Meng-Rou Huang
  • Mao-Wang LuEmail author
  • Xin-Hong Huang
  • Dong-Hui Liang
  • Zeng-Lin Cao
Letter
  • 12 Downloads

Abstract

We theoretically investigate how to manipulate the wave-vector filtering effect by δ-doping for electrons in a magnetically and electrically confined semiconductor heterostructure, which can be constructed by patterning a ferromagnetic stripe and a Schottky-metal stripe in a parallel configuration on the surface of the GaAs/AlxGa1−xAs heterostructure. The δ-doping dependent transmission is calculated by exactly solving the Schrödinger equation with the help of an improved transfer matrix method. An appreciable wave-vector filtering effect is revealed. Its wave-vector filtering efficiency is found to be tunable by changing the weight or position of the δ-doping. Thus, a structurally controllable momentum filter can be obtained for nanoelectronics device applications.

Keywords

Magnetically and electrically confined semiconductor heterostructure The δ-doping Wave-vector filtering effect Wave-vector filtering efficiency Tunable momentum filter 

Notes

Funding Information

This work was supported by the National Natural Science Foundation of China (grant. no. 11864009).

References

  1. 1.
    Lu, K.Y., Lu, M.W., Chen, S.Y., Cao, X.L., Huang, X.H.: J. Magn. Magn. Mater. 491, 165491 (2019)CrossRefGoogle Scholar
  2. 2.
    Matulis, A., Peeters, F.M., Vasilopoulos, P.: Phys. Rev. Lett. 72, 1518 (1994)ADSCrossRefGoogle Scholar
  3. 3.
    Nogaret, A., Bending, S.J., Henini, M.: Phys. Rev. Lett.84, 2231 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    Nogaret, A.: J. Phys.-Condens. Mat. 22, 253201 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    Guo, Y., Gu, B.L., Zeng, Z., Yu, J.Z., Kawvazoe, Y.: Phys. Rev. B. 62, 2635 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    Papp, G., Peeters, F.M.: Appl. Phys. Lett. 78, 2184 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    Lu, M.W., Zhang, L.D., Yan, X.H.: Phys. Rev. B. 66, 224412 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    Zhai, F., Guo, Y., Gu, B.L.: Phys. Rev. B. 66, 125305 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    Lu, M.W., Zhang, L.D.: J. Phys. Condens. Matter. 15, 1267 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    Papp, G., Peeters, F.M.: J. Phys. Condens. Matter. 16, 8275 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    Chen, X., Li, C.F., Ban, Y.: Phys. Rev. B. 77, 073307 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    Yuan, L., Xiang, L.L., Kong, Y.H., Lu, M.W., Lan, Z.J., Zeng, A.H., Wang, A.Y.: Eur. Phys. J. B. 85, 8 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    Lu, M.W., Zhang, G.L., Chen, S.Y.: J. Appl. Phys.112, 012309 (2012)Google Scholar
  14. 14.
    Lu, J.D.: Appl. Surf. Sci. 255, 7348 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    Lu, M.W., Chen, S.Y., Zhang, G.L., Huang, X.H.: IEEE T. Electron Dev. 85, 3045 (2018)ADSCrossRefGoogle Scholar
  16. 16.
    Shen, L.H., Ma, W.Y., Zhang, G.L., Yang, S.P.: Phys. E. 71, 39 (2015)CrossRefGoogle Scholar
  17. 17.
    Lu, M.W., Chen, S.Y., Zhang, G.L., Huang, X.H.: J. Phys. Condens. Matter. 30, 145302 (2018)ADSCrossRefGoogle Scholar
  18. 18.
    Shen, L.H., Ma, W.Y., Liu, G.X., Yuan, L.: J. Magn. Magn. Mater. 401, 231 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    Lu, M.W., Chen, S.Y., Zhang, G.L., Huang, X.H.: IEEE J. Electron Devi. 6, 227 (2018)CrossRefGoogle Scholar
  20. 20.
    Kong, Y.H., Chen, S.Y., Li, A.H., Fu, X.: Vacuum. 122, 43 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    Lu, M.W., Cao, X.L., Huang, X.H., Jiang, Y.Q., Yang, S.P.: Appl. Surf. Sci. 360, 989 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    Shen, L.H., Zhang, G.L., Yang, D.C.: Phys. E. 83, 450 (2016)CrossRefGoogle Scholar
  23. 23.
    Capasso, F., Mohammed, K., Cho, A.Y., Hull, R., Hutchinson, A.L.: Appl. Phys. Lett. 47, 420 (1985)ADSCrossRefGoogle Scholar
  24. 24.
    Lu, M.W., Wang, Z.Y., Liang, Y.L., An, Y.B., Li, L.Q.: Appl. Phys. Lett. 102, 022410 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    Lu, M.W., Wang, Z.Y., Liang, Y.L., An, Y.B., Li, L.Q.: EPL. 101, 47001 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    Lu, M.W., Wang, Z.Y., Cao, X.L., Li, S.: Solid State Commun. 165, 45 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    Lu, M.W., Cao, X.L., Huang, X.H., Jiang, Y.Q., Li, S.: J. Appl. Phys. 115, 175304 (2014)Google Scholar
  28. 28.
    Lu, M.W., Cao, X.L., Huang, X.H., Jiang, Y.Q., Li, S., Yang, S.P.: Superllat. Microstruct. 77, 232 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    Ma, W.Y., Zhang, G.L., Chen, S.Y., Jiang, Y.Q., Li, S.: Phys. Lett. A. 378, 1642 (2014)CrossRefGoogle Scholar
  30. 30.
    Liu, G.X., Ma, W.Y., Shen, L.H.: Superllat. Microstruct. 88, 204 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    Jiang, Y.Q., Lu, M.W., Huang, X.H., Yang, S.P., Tang, Q.: J. Electron. Mater. 45, 4796 (2016)CrossRefGoogle Scholar
  32. 32.
    Zhang, L.L., Lu, M.W., Jiang, Y.Q., Tang, Q.: Phys. Lett. A. 380, 3250 (2016)Google Scholar
  33. 33.
    Lu, M.W., Chen, S.Y., Zhang, G.L.: IEEE Trans. Electr. Dev. 64, 1845 (2017)ADSGoogle Scholar
  34. 34.
    Liu, Y., Zhang, L.L., Lu, M.W., Zhou, Y.L., Li, F.: Solid State Commun. 253, 6 (2017)ADSCrossRefGoogle Scholar
  35. 35.
    Liu, G.X., Zhang, L.L., Zhang, G.L., Shen, L.H.: Appl. Phys. A Mater. Sci. Process. 123, 241 (2017)ADSCrossRefGoogle Scholar
  36. 36.
    Liu, X.H., Liu, C.S., Xiao, B.H., Lu, Y.G.: Vacuum. 148, 173 (2018)ADSCrossRefGoogle Scholar
  37. 37.
    Zhai, F., Xu, H.Q., Guo, Y.: Phys. Rev. B. 70, 085308 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Meng-Rou Huang
    • 1
  • Mao-Wang Lu
    • 1
    Email author
  • Xin-Hong Huang
    • 1
  • Dong-Hui Liang
    • 1
  • Zeng-Lin Cao
    • 1
  1. 1.College of ScienceGuilin University of TechnologyGuilinPeople’s Republic of China

Personalised recommendations