Advertisement

Strain and Electronic Nematicity in La2-xSrxCuO4

  • Anthony T. BollingerEmail author
  • Ze-Bin Wu
  • Longlong Wu
  • Xi He
  • Ilya Drozdov
  • Jie Wu
  • Ian Robinson
  • Ivan Božović
Original Paper
  • 50 Downloads

Abstract

Electronic nematicity has previously been observed in La2-xSrxCuO4 thin films by the angle-resolved transverse resistivity method with a director whose orientation is always pinned to the crystal axes when the film is grown on an orthorhombic substrate but not when the substrate is tetragonal. Here we report on measurements of thin films grown on (tetragonal) LaSrAlO4 and subsequently placed in an apparatus that allows the application of uniaxial compressive strain. The apparatus applied enough force to produce a 1% orthorhombicity in LaSrAlO4 and yet no change in the electronic nematicity was observed in films under strain compared to when they were unstrained. The lattice effects are weak, and the origin of nematicity is primarily electronic.

Keywords

Electronic nematicity Spontaneous symmetry breaking Strain Cuprates High-temperature superconductivity Transverse voltage Electrical transport 

Notes

Funding Information

The research at Brookhaven National Laboratory was supported by the US Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. X. H. was supported by the Gordon and Betty Moore Foundation’s EPiQS Initiative through Grant GBMF4410.

References

  1. 1.
    Kivelson, S.A., Fradkin, E., Emery, V.J.: Electronic liquid-crystal phases of a doped Mott insulator. Nature. 393, 550–553 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    Ando, Y., Segawa, K., Komiya, S., Lavrov, A.N.: Electrical resistivity anisotropy from self-organized one dimensionality in high-temperature superconductors. Phys. Rev. Lett. 88, 137005 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    Abdel-Jawad, M., Kennett, M.P., Balicas, L., Carrington, A., Mackenzie, A.P., McKenzie, R.H., Hussey, N.E.: Anisotropic scattering and anomalous normal-state transport in a high-temperature superconductor. Nat. Phys. 21, 821–825 (2006)CrossRefGoogle Scholar
  4. 4.
    Daou, R., Chang, J., LeBoeuf, D., Cyr-Choinière, O., Laliberté, F., Doiron-Leyraud, N., Ramshaw, B.J., Liang, R., Bonn, D.A., Hardy, W.N., Taillefer, L.: Broken rotational symmetry in the pseudogap phase of a high-Tc superconductor. Nature. 463, 519–522 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    Lawler, M.J., Fujita, K., Lee, J., Schmidt, A.R., Kohsaka, Y., Kim, C.K., Eisaki, H., Uchida, S., Davis, J.C., Sethna, J.P., Kim, E.-A.: Intra-unit-cell electronic nematicity of the high-T c copper-oxide pseudogap states. Nature. 466, 347–351 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    Li, L., Alidoust, N., Tranquada, J.M., Gu, G.D., Ong, N.P.: Unusual Nernst effect suggesting time-reversal violation in the striped cuprate superconductor La2-xBaxCuO4. Phys. Rev. Lett. 107, 277001 (2011)CrossRefGoogle Scholar
  7. 7.
    Fujita, K., Kim, C.K., Lee, I., Lee, J., Hamidian, M.H., Firmo, I.A., Mukhopadhyay, S., Eisaki, H., Uchida, S., Lawler, M.J., Kim, E.-A., Davis, J.C.: Simultaneous transitions in cuprate momentum-space topology and electronic symmetry breaking. Science. 344, 612–616 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    Zhao, L., Belvin, C.A., Liang, R., Bonn, D.A., Hardy, W.N., Armitage, N.P., Hsieh, D.: A global inversion-symmetry-broken phase inside the pseudogap region of YBa2Cu3Oy. Nat. Phys. 13, 250–354 (2017)CrossRefGoogle Scholar
  9. 9.
    Wu, J., Bollinger, A.T., He, X., Božović, I.: Spontaneous breaking of rotational symmetry in copper oxide superconductors. Nature. 547, 432–435 (2017)CrossRefGoogle Scholar
  10. 10.
    Wu, J., Bollinger, A.T., He, X., Božović, I.: Detecting electronic nematicity by the angle-resolved transverse resistivity measurements. J. Supercond. Nov. Magn. 32, 1623–1628 (2018)CrossRefGoogle Scholar
  11. 11.
    Wu, J., Bollinger, A.T., He, X., Gu, G.D., Miao, H., Dean, M.P.M., Robinson, I.K., Božović, I.: Angle-resolved transport measurements reveal electronic nematicity in cuprate superconductors. J. Supercond. Nov. Magn. 1 (2019).  https://doi.org/10.1007/s10948-019-05222-5
  12. 12.
    Borzi, R.A., Grigera, S.A., Farrell, J., Prry, R.S., Lister, S.J.S., Lee, S.L., Tennant, D.A., Maeno, Y., Mackenzie, A.P.: Formatiion of a nematic fluid at high fields in Sr3Ru2O7. Science. 315, 214–217 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    Wu, J., Nair, H.P., Bollinger, A.T., He, X., Robinson, I., Schreiber, N.J., Shen, K.M., Schlom, D.G., Božović, I.: Electronic nematicity in Sr2RuO4. Submitted (2019)Google Scholar
  14. 14.
    Fernandes, R.M., Chubukov, A.V., Schmalian, J.: What drives nematic order in iron-based superconductors? Nat. Phys. 10, 97–104 (2014)CrossRefGoogle Scholar
  15. 15.
    Avci, S., Chmaissem, O., Allred, J.M., Rosenkranz, S., Eremin, I., Chubukov, A.V., Bugaris, D.E., Chung, D.Y., Kanatzidis, M.G., Castellan, J.-P., Schlueter, J.A., Claus, H., Khalyavin, D.D., Manuel, P., Daoud-Aladine, A., Osborn, R.: Magnetically driven suppression of nematic order in an iron-based superconductor. Nat. Commun. 5, 3845 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    Watson, M.D., Kim, T.K., Haghighirad, A.A., Davies, N.R., McCollam, A., Narayanan, A., Blake, S.F., Chen, Y.L., Ghannadzadeh, S., Schofield, A.J., Hoesch, M., Meingast, C., Wolf, T., Coldea, A.I.: Emergence of the nematic electronic state in FeSe. Phys. Rev. Lett. 91, 155106 (2015)Google Scholar
  17. 17.
    Baek, S.-H., Efremov, D.V., Ok, J.M., Kim, J.S., van den Brink, J., Büchner, B.: Orbital-driven nematicity in FeSe. Nat. Mater. 14, 210 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    Hosoi, S., Matsuura, K., Ishida, K., Wang, H., Mizukami, Y., Watashige, T., Kasahara, S., Matsuda, Y., Shibauchi, T.: Nematic quantum critical point without magnetism in FeSe1-xSx superconductors. Proc. Natl. Acad. Sci. U. S. A. 113, 8139–8143 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    Licciardello, S., Buhot, J., Lu, J., Ayres, J., Kasahara, S., Matsuda, Y., Shibauchi, T., Hussey, N.E.: Electrical resistivity across a nematic quantum critical point. Nature. 567, 213–217 (2019)ADSCrossRefGoogle Scholar
  20. 20.
    Varma, C.M., Zhu, L.: Helicity order: hidden order parameter in URu2Si2. Phys. Rev. Lett. 96, 036405 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    Okazaki, R., Shibauchi, T., Shi, H.J., Haga, Y., Matsuda, T.D., Yamamoto, E., Onuki, Y., Ikeda, H., Matsuda, Y.: Rotational symmetry breaking in the hidden-order phase of URu2Si2. Science. 331, 439–442 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    Ronning, F., Helm, T., Shirer, K.R., Bachmann, M.D., Balicas, L., Chan, M.K., Ramshaw, B.J., McDonald, R.D., Balakirev, F.F., Jaime, M., Bauer, E.D., Moll, P.J.W.: Electronic in-plane symmetry breaking at field-tuned quantum criticality in CeRhIn5. Nature. 548, 313–317 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    Sun, Y., Kittaka, S., Sakakibara, T., Machida, K., Wang, J., Wen, J., Xing, X., Shi, Z., Tamegai, T.: Quasiparticle evidence for the nematic state above Tc in SrxBi2Se3. Phys. Rev. Lett. 123, 027002 (2019)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Condensed Matter Physics and Materials Science DivisionBrookhaven National LaboratoryUptonUSA
  2. 2.Applied Physics DepartmentYale UniversityNew HavenUSA

Personalised recommendations