Advertisement

Phase Transition in Mixed Spin Ising Nanoparticles

  • T. KaneyoshiEmail author
Original Paper

Abstract

The phase transitions of two mixed-spin (1/2,1) Ising nanoparticles with n = 4.0 and n = 6.0 are investigated by using the effective-field theory with correlations (EFT). The spin-1 atom with a single-ion anisotropy is decorated at the center of regular n-polygon (or nanoparticle with a value of n) and the spin-1/2 n atoms are put at the perimeter n sites. The phase transition in the nanoparticle with n = 6.0 is rather different from that in the nanoparticle with n = 4.0. It is shown that the number of n plays just like the coordination number z in the bulk mixed-spin Ising systems: the hexagonal nanoparticle with n = 6.0 has exhibited the first-order transition and the tricritical behavior, although the tetragonal nanoparticle with n = 3.0 did not show such behaviors, depending on the values of exchange interactions.

Keywords

Phase diagrams Magnetizations Nanoparticles Ferrimagnetic phenomena 

Notes

References

  1. 1.
    Zhu, N., Ji, H., Yu, P., Niu, J., Farooq, M.U., Akram, M.W., Udego, I.O., Li, H., Niu, X.: Surface modification of magnetic iron oxide nanoparticles. Nanomatrials. 8, 810 (2018)CrossRefGoogle Scholar
  2. 2.
    Crespo, P., de la Presa, P., Martin, P., Multinger, M., Alonso, J.M., Rivero, G., Yudurain, F., Gonzalez-Calbet, J.M., Hernando, A.: Magnetism in nanoparticles: tuning properties with cating. J. Phys. Condens. Matter. 25, 484006 (2013)CrossRefGoogle Scholar
  3. 3.
    Bhowmik, R.N., Magn, J.: Evidence of ferrimagnetism in ferromagnetic La0.67Ca0.33MnO3 nanoparticle. Magn. Mater. 323, 311 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    Zang, Y., Wang, X.P., Fang, Q.F., Li, X.G.: Magneti and charge ordering in nanosized manganites. Appl. Phys. Rev. 1, 031302 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    K. Das, N. Banu, I. Das and B.N. Dev, J. Magn. Magn. Mater. 489 (2019) 165309. Investigation of size-dependent magnetic ordering in charge ordered antiferromagnetic nanoparticles via magnetocaloric effect.CrossRefGoogle Scholar
  6. 6.
    M.B. Ali, K. El Maalam, H. El Moussaoui, O. Mounkachi, M. Hamedoun, M. Masrour, E. K. Hill and A. Benyoussef, J. Magn. Magn. Mater. 398 (2018) 20. Effect of zinc concentration on the structural and magnetic properties of mixed Co-Zn ferrites nanoparticles synthesized by sol/gel method.Google Scholar
  7. 7.
    Kaneyoshi, T.: Magnetism in a graphene-like Ising nanoparticle under an applied transverse field. J. Phys. Chem. Solids. 126, 219 (2019)ADSCrossRefGoogle Scholar
  8. 8.
    Lu, Z.M., Si, N., Wang, Y.N., Zang, F., Meng, J., Miao, H.L., Jiang, W.: Unique magnetism in different sizes of center decorated tetragonal nanoparticles with the anisotropy. Physica A. 523, 438 (2019)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Feraoun, A., Amraoui, S., Kerouad, M.: Magnetic properties of a mixed spin-(5/2,2) Ising core / shell nanoparticles: Monte Carlo study. Physica A. 526, 120924 (2019)MathSciNetCrossRefGoogle Scholar
  10. 10.
    T. Kaneyoshi, Chem. Phys. Lett. 715 (2019) 72. Unique phenomena induced by an exchange interaction between two graphene-like Ising nanoparticles in an applied transvwerse field.ADSCrossRefGoogle Scholar
  11. 11.
    E. Vatanserver and Y. Yuksel, J. Magn. Magn. Mater. 441 (2017) 548. Nonmagnetic impurities and roughness effects on the finite temperature magnetic properties of core-shell spherical nanoparticles with antiferromagnetic interface coupling.Google Scholar
  12. 12.
    Zaim, N., Zaim, A., Kerouad, M.: The phase diagrams of a spin 1/2 core and a spin 1 shell nanoparticle with a disordered interface. Superlattice Microst. 100, 490 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    Jiang, W., Huang, J.Q.: Magnetic properties of a hexagonal prismatic nanoparticle with ferrimagnetic core-shell structure. Physica E. 78, 115 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    El Hamri, H., Bouhou, S., Essoudi, I., Ainane, A., Ahuja, R.: J Magn Magn Mater. 442, 53 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    Mouhib, M., Benayard, N., Azhari, M., Magn, J.: Mixed spin (1/2, 1) transverse Ising nanoparticles. Magn. Mater. 419, 325 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    Kaneyoshi, T.: Phase diagrams of a nanoparticle described by the transverse Ising model. Phys. Status Solidi B. 242, 2938 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    T. Kaneyoshi, J. Phys. Soc. Jpn. 56 (1987) 2657. Curie temperatures and tricritical points in mixed Ising ferromagnetic systems.Google Scholar
  18. 18.
    Kaneyoshi, T.: Tricritical behavior of a mixed spin-1/2 and spin-2 Ising system. Physica A. 205, 637 (1994)ADSCrossRefGoogle Scholar
  19. 19.
    Selke, W., Oitmaa, J., Phys, J.: Condens. Matter, Monte Carlo study of mixed-spin S= (1/2, 1) Ising ferrimagnets. 22, 076004 (2010)Google Scholar
  20. 20.
    Honmura, R., Kaneyoshi, T.: Contribution to the new type of effective-field theory of Ising model. J. Phys. C. 12, 3979 (1979)ADSCrossRefGoogle Scholar
  21. 21.
    Kaneyoshi, T.: Differential operator technique in the Ising spin systems. Act. Phys. Pol. A. 83, 703 (1993)CrossRefGoogle Scholar
  22. 22.
    Callen, H.B.: A note on Green function and the Ising model. Phys. Lett. 4, 161 (1963)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Suzuki, M.: Generalized exact formula for the correlations of the Ising model and other classical systems. Phys. Lett. 19, 267 (1965)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Herpin, A.: Theory of Magnetism. University Press of France (1968)Google Scholar
  25. 25.
    Zernike, F.: The propagation of order in co-operative phenomena: Part1. The AB case. Physica. 7, 565 (1940)ADSCrossRefGoogle Scholar
  26. 26.
    Jiang, W., Wang, Y.N.: Phase transition and magnetization of a hexagonal prismatic nanoisland with a ferrimagnetic spin configuration. J. Magn. Magn. Mater. 426, 785, (2017)ADSCrossRefGoogle Scholar
  27. 27.
    W. Wang, D. D. Chen, D. L. Lv, J.P. Liu, Q. Li and Z. Peng, J. Phys. Chem .Solids 108 (2017) 39. Monte Carlo study of magnetic and thermodynamic properties of a ferrimagnetic Ising nanoparticle with hexagonal core-shell structure.ADSCrossRefGoogle Scholar
  28. 28.
    S.Q. Yang, W. Wang, F. Wang, B.C. Li, H.J. Wu, M. Yang and J.H. Xu, J. Phys. Chem .Solids 135 (2019) 10911. Magnetic behaviors in a ternary nanoisland with bilayer hexagonal core-shell structure.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Nagoya UniversityNagoyaJapan

Personalised recommendations