Advertisement

Modeling the Magnetocaloric Effect of La0.8MnO3 by the Mean-Field Theory

  • C. HenchiriEmail author
  • A. Benali
  • T. Mnasri
  • M. A. Valente
  • E. Dhahri
Original Paper
  • 36 Downloads

Abstract

In this research paper, our central focus is upon the investigation of the mean-field approach based on the Bean-Rodbell model applied to the magnetic properties of the compound La0.8MnO3. Using the isotherm, we determined the value of the mean-field exchange parameter λ. After using a MATLAB software, the values of J, g, and M0 were identified and compared with the experimental values. Another MFSS software running with MATLAB program was invested to determine the theoretical variation of magnetization as a function of magnetic field at different temperatures, the variation of magnetic entropy, and the nature of transition compared with the experimental values provided by data and Maxwell relation. A good accordance has been recorded between the experimental and theoretical curves. The values of ∆Smax and RCP which are equal to 3.63 J kg−1 K−1 and 83.38 J kg−1, respectively. They were determined by the Maxwell relation and were compared with those determined by the Bean-Rodbell model which are equal to 4.01 J kg−1 K−1 for ∆Smax and to 97.36 J kg−1 for the RCP at 2 T respectively.

Keywords

Perovskites Mean-field scaling Exchange parameter Magnetic entropy 

Notes

Acknowledgements

The authors acknowledge the support of the Tunisian Ministry of Higher Education and Scientific Research and within the framework of Tunisian-Portuguese cooperation in the field of scientific research and technology.

References

  1. 1.
    Abdelmoula, N., Dhahri, E., Fourati, N., Reversat, L.: Monovalent effects on structural, magnetic and magnetoresistance properties in doped manganite oxides. J. Alloys Compd. 365, 25–30 (2004)CrossRefGoogle Scholar
  2. 2.
    Chahara, K., Ohno, T., Kasai, M., Kozono, Y.: Magnetoresistance in magnetic manganese oxide with intrinsic antiferromagnetic spin structure. Appl. Phys. Lett. 63, 1990–1992 (1993)ADSCrossRefGoogle Scholar
  3. 3.
    Cormack, M.M., Jin, S., Tiefel, T.H., Fleming, R., Phillips, J.: Very large magnetoresistance in perovskite-like LaCaMnO thin films. Appl. Phys. Lett. 64, 3045–3047 (1994)ADSCrossRefGoogle Scholar
  4. 4.
    von Helmolt, R., Wecker, J.: intrinsic giant magnetoresistance of mixed valence La-A-lb oxide (A = Ca, Sr, Ba) (invited). J. Appl. Phys. 76(1994), 6925–6928Google Scholar
  5. 5.
    Awana, V.P.S., Tripathi, R., Balamurugan, S., Kishan, H., Takayama-Muromachi, E.: Magneto-transport of high TCR (temperature coefficient of resistance) La2/3Ca1/3MnO3: Ag polycrystalline composites. Solid State Commun. 140, 410–415 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    Awana, V.P.S., Tripathi, R., Kumar, N., Kishan, H., Bhalla, G.L., Zeng, R., Chandra, L.S.S., Ganesan, V., Habermeier, H.U.: Magnetotransport of: a potential room temperature bolometer and magnetic sensor. J. Appl. Phys. 107, 09D723 (2010)CrossRefGoogle Scholar
  7. 7.
    Tripathi, R., Dogra, A., Srivastava, A.K., Awana, V.P.S., Kotnala, R.K., Bhalla, G.L., Kishan, H.: Influence of sintering temperature and oxygen annealing on transport properties of La0.67Ca0.33MnO3. J. Phys. D. Appl. Phys. 42, 025003 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    Dhahri, N., Dhahri, A., Cherif, K., Dhahri, J., Belmabrouk, H., Dhahri, E.: Effect of Co substitution on magnetocaloric effect in La0.67Pb0.33Mn1−xCoxO3 (0.15 ≤ x ≤ 0.3). J. Alloys Compd. 507, 405–409 (2010)CrossRefGoogle Scholar
  9. 9.
    Othmani, S., Blel, R., Bejar, M., Sajieddine, M., Dhahri, A.E., Hlil, E.K.: New complex magnetic materials for an application in Ericsson refrigerator. Solid State Commun. 149, 969–972 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    Warburg, E.: Magnetische Untersuchungen. Ann. Phys. Chem. 13, 141–164 (1881)ADSCrossRefGoogle Scholar
  11. 11.
    Jha, R., Singh, S.K., Kumar, A., Awana, V.P.S.: Room temperature magnetic entropy change and magnetoresistance in La0.70(Ca0.30- xSrx)MnO3: Ag 10% (x = 0.0-0.10). J. Magn. Magn. Mater. 324, 2849–2853 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    Phan, M.H.: Excellent magnetocaloric properties of La0.7Ca0.3−xSrxMnO3 (0.05 < x <0.25) single crystals. Appl. Phys. Lett. 86, 72 (2005)CrossRefGoogle Scholar
  13. 13.
    Coey J. Magnetism and magnetic materialsGoogle Scholar
  14. 14.
    Kittel C. Introduction to solid state physicsGoogle Scholar
  15. 15.
    Gonzalo JA. Effective field approach to phase transitions and some applications to ferroelectricsGoogle Scholar
  16. 16.
    Amaral JS, Das S, Amaral VS. The mean field theory in the study of ferromagnets and the magnetocaloric effect, thermodynamics-systems in equilibrium and nonequilibriumGoogle Scholar
  17. 17.
    Ogale, S.B., Shreekala, R., Bathe, R., Date, S.K., Patil, S.I., Hannoyer, B., Petit, F., Marest, G.: Phys. Rev. B. 57, 7841 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    Cyrot, M., et al.: Magnétisme I—Fondements. Presses Universi-taires de Grenoble, Grenoble (1999)Google Scholar
  19. 19.
    Tishin, A.M., Spichkin, Y.I.: The Magnetocaloric effect and its applications. IOP Publishing, London (2003)CrossRefGoogle Scholar
  20. 20.
    Coey, J.: Magnetism and magnetic materials. Cambridge University Press, Cambridge (2009)Google Scholar
  21. 21.
    Banerjee, S.K.: on a generalized approach to first and second order magnetic transition. Phys. Lett. 12, 16–17 (1964)ADSCrossRefGoogle Scholar
  22. 22.
    Pecharsky, V.K., Gschneidner Jr., K.A.: Magnetocaloric effect and magnetic refrigeration. J. Magn. Magn. Mater. 200, 44–56 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    Jia, L., Sun, J., Zhang, H., Hu, F., Dong, C., Shen, B.: J. Phys. Condens. Matter. 18, 9999 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • C. Henchiri
    • 1
    Email author
  • A. Benali
    • 1
    • 2
  • T. Mnasri
    • 3
  • M. A. Valente
    • 2
  • E. Dhahri
    • 1
  1. 1.Laboratoire de Physique Appliquée, Faculté des Sciences de Sfax, B.P. 802SfaxTunisia
  2. 2.I3N, Physics DepartmentUniversity of AveiroAveiroPortugal
  3. 3.Research Unit UPIM, Faculty of ScienceUniversity of GafsaGafsaTunisia

Personalised recommendations