Advertisement

Electrolyte-Gated Oxides

  • Anthony T. BollingerEmail author
  • Guy Dubuis
  • Xiang Leng
  • Xi He
  • Ivan Božović
Original Paper
  • 59 Downloads

Abstract

Electrolyte gating has the potential to generate electric fields at the surface of materials in the 107–108-V/cm range and induce charge carriers in these materials up to 1014–1015 cm−2, making this technique very attractive for studying complex and functional oxides. Several types of processes—notably including proton diffusion and intake—can occur during charging, which makes it vitally important to consider and understand exactly how a given material is interacting with an electrolyte. We discuss several of these mechanisms and how to distinguish between them.

Keywords

Electrolyte Gating Oxides Electrical transport 

Notes

Funding Information

The research at Brookhaven National Laboratory was supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. X. H. was supported by the Gordon and Betty Moore Foundation’s EPiQS Initiative through Grant GBMF4410. G.D. was supported by the Laboratory for Physics of Complex Matter (EPFL) and the Swiss National Science Foundation.

References

  1. 1.
    von Klitzing, K., Dorda, G., Pepper, M.: New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Phys. Rev. Lett. 45, 494–497 (1980)ADSCrossRefGoogle Scholar
  2. 2.
    Ahn, C.H., Triscone, J.-M., Mannhart, J.: Electric field effect in correlated oxide systems. Nature. 424, 1015–1018 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    Cassinese, A., De Luca, G.M., Prigiobbo, A., Salluzzo, M., Vaglio, R.: Field-effect tuning of carrier density in Nd1.2Ba1.8Cu3Oy thin films. Appl. Phys. Lett. 84, 3933–3935 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    Mannhart, J., Bednorz, J.G., Müller, K.A., Schlom, D.G.: Electric field effect on superconducting YBa2Cu3O7−δ films. Z. Physik B - Condensed Matter. 83, 307–311 (1991)ADSCrossRefGoogle Scholar
  5. 5.
    Logvenov, G.Y., Sawa, A., Schneider, C.W., Mannhart, J.: Influence of the doping concentration of Y1-yCayBa2Cu3O7-δ drain-source channels on the properties of superconducting field-effect devices. Appl. Phys. Lett. 83, 3528–3530 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    Logvenov, G.Y., Schneider, C.W., Mannhart, J., Barash, Y.S.: Studies of superconducting field effect transistors with sheet resistances close to the quantum resistance. Appl. Phys. Lett. 86, 202505 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    Matthey, D., Reyren, N., Triscone, J.-M., Schneider, T.: Electric-field-effect modulation of the transition temperature, mobile carrier density, and in-plane penetration depth of NdBa2Cu3O7-δ Thin Films. Phys. Rev. Lett. 98, 057002 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    Ahn, C.H., Gariglio, S., Paruch, P., Tybell, T., Antognazza, L., Triscone, J.-T.: Electrostatic modulation of superconductivity in ultrathin GdBa2Cu3O7-x Films. Science. 284, 1152–1155 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    Gariglio, S., Ahn, C.H., Matthey, D., Triscone, J.-M.: Electrostatic tuning of the hole density in NdBa2Cu3O7-δ films and its effect on the hall response. Phys. Rev. Lett. 88, 067002 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    Crassous, A., Bernard, R., Fusil, S., Bouzehouane, K., Briatico, J., Bibes, M., Barthélémy, A., Villegas, J.E.: BiFeO3/YBa2Cu3O7−δ heterostructures for strong ferroelectric modulation of superconductivity. J. Appl. Phys. 113, 024910 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    Peck, S.R., Curtin, L.S., McDevitt, J.T., Murray, R.W., Collman, J.P., Little, W.A., Zetterer, T., Duan, H.M., Dong, C., Hermann, A.M.: Response of the double-layer capacitance of a high-temperature superconductor/fluid electrolyte interface to the onset of superconductivity. J. Am. Chem. Soc. 114, 6771–6775 (1992)CrossRefGoogle Scholar
  12. 12.
    Yuan, H., Shimotani, H., Tsukazaki, A., Ohtomo, A., Kawasaki, M., Iwasa, Y.: High-density carrier accumulation in ZnO field-effect transistors gated by electric double layers of ionic liquids. Adv. Funct. Mater. 19, 1046–1053 (2009)CrossRefGoogle Scholar
  13. 13.
    Lee, K.H., Kang, M.S., Zhang, S., Gu, Y., Lodge, T.P., Frisbie, C.D.: “Cut and stick” rubbery ion gels as high capacitance gate dielectrics. Adv. Mater. 24, 4457–4462 (2012)CrossRefGoogle Scholar
  14. 14.
    Ueno, K., Nakamura, S., Shimotani, H., Ohtomo, A., Kimura, N., Nojima, T., Aoki, H., Iwasa, Y., Kawasaki, M.: Electric-field-induced superconductivity in an insulator. Nat. Mater. 7, 855–858 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    Bollinger, A.T., Dubuis, G., Yoon, J., Pavuna, D., Misewich, J., Božović, I.: Superconductor–insulator transition in La2−xSrxCuO4 at the pair quantum resistance. Nature. 472, 458–460 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    Leng, X., Garcia-Barriocanal, J., Bose, S., Lee, Y., Goldman, A.: Electrostatic control of the evolution from a superconducting phase to an insulating phase in ultrathin YBa2Cu3O7−x Films. Phys. Rev. Lett. 107, 027001 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    Garcia-Barriocanal, J., Kobrinskii, A., Leng, X., Kinney, J., Yang, B., Snyder, S., Goldman, A.M.: Electronically driven superconductor-insulator transition in electrostatically doped La2CuO4+δ thin films. Phys. Rev. B. 87, 024509 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Li, M., Han, W., Jiang, X., Jeong, J., Samant, M.G., Parkin, S.P.: Suppression of ionic liquid gate-induced metallization of SrTiO3(001) by Oxygen. Nano Lett. 13, 4675–4678 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    Reagor, D.W., Butko, V.Y.: Highly conductive nanolayers on strontium titanate produced by preferential ion-beam etching. Nat. Mater. 4, 593–596 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    Siemons, W., Koster, G., Yamamoto, H., Harrison, W.A., Lucovsky, G., Geballe, T.H., Blank, D.H.A., Beasley, M.R.: Origin of charge density at LaAlO3 on SrTiO3 heterointerfaces: possibility of intrinsic doping. Phys. Rev. Lett. 98, 196802 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    Eckstein, J.N.: Watch out for the lack of oxygen. Nat. Mater. 6, 473–474 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    Reyren, N., Thiel, S., Caviglia, A.D., Fitting Kourkoutis, L., Hammerl, G., Richter, C., Schneider, C.W., Kopp, T., Rüetschi, A.-S., Jaccard, D., Gabay, M., Muller, D.A., Triscone, J.-M., Mannhart, J.: Superconducting interfaces between insulating oxides. Science. 317, 1196–1199 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    Nakano, M., Shibuya, K., Okuyama, D., Hatano, T., Ono, S., Kawasaki, M., Iwasa, Y., Tokura, Y.: Collective bulk carrier delocalization driven by electrostatic surface charge accumulation. Nature. 487, 459–462 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    Jeong, J., Aetukuri, N., Graf, T., Schladt, T.D., Samant, M.G., Parkin, S.S.P.: Suppression of metal-insulator transition in VO2 by electric field–induced oxygen vacancy formation. Science. 339, 1402–1405 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    Yi, H.T., Gao, B., Xie, W., Cheong, S.-W., Podzorov, V.: Tuning the metal-insulator crossover and magnetism in SrRuO3 by ionic gating. Sci. Rep. 4, 6604 (2014)CrossRefGoogle Scholar
  26. 26.
    Xiang, P.-H., Asanuma, S., Yamada, H., Sato, H., Inoue, I.H., Akoh, H., Sawa, A., Kawasaki, M., Iwasa, Y.: Electrolyte-gated smCoO3 thin-film transistors exhibiting thickness-dependent large switching ratio at room temperature. Adv. Mater. 25, 2158–2161 (2013)CrossRefGoogle Scholar
  27. 27.
    Ito, M., Matsubara, Y., Kozuka, Y., Takahashi, K.S., Kagawa, F., Ye, J.T., Iwasa, Y., Ueno, K., Tokura, Y., Kawasaki, M.: Electric double layer transistors with ferroelectric BaTiO3 channels. Appl. Phys. Lett. 104, 222101 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    Nishino, R., Kozuka, Y., Uchida, M., Kagawa, F., Kawasaki, M.: Electrical conduction on the surface of ferroelectric PbTiO3 thin film induced by electrolyte gating. Appl. Phys. Lett. 112, 051602 (2018)ADSCrossRefGoogle Scholar
  29. 29.
    Leng, X., Bollinger, A.T., Božović, I.: Purely electronic mechanism of electrolyte gating of indium tin oxide thin films. Sci. Rep. 6, 31239 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    Ji, H., Wei, J., Natelson, D.: Modulation of the electrical properties of VO2 nanobeams using an ionic liquid as a gating medium. Nano Lett. 12, 2988–2992 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    Katase, T., Endo, K., Tohei, T., Ikuhara, Y., Ohta, H.: Room-temperature-protonation-driven on-demand metal-insulator conversion of a transition metal oxide. Adv. Electron. Mater. 1, 1500063 (2015)CrossRefGoogle Scholar
  32. 32.
    Liu, N., Zhu, L.Q., Xiao, H., Wan, C.J., Liu, Y.H., Chao, J.Y.: Transient characteristics for proton gating in laterally coupled indium-zinc-oxide transistors. ACS Appl. Mater. Interfaces. 7, 6205–6210 (2015)CrossRefGoogle Scholar
  33. 33.
    Shibuya, K., Sawa, A.: Modulation of metal–insulator transition in VO2 by electrolyte gating-induced protonation. Adv. Electron. Mater. 2, 1500131 (2016)CrossRefGoogle Scholar
  34. 34.
    Cui, Y., Zhang, G., Li, H., Lin, H., Zhu, X., Wen, H.-H., Wang, G., Sun, J., Ma, M., Li, Y., Gong, D., Xie, T., Gu, Y., Li, S., Luo, H., Yu, P., Yu, W.: Protonation induced high-Tc phase in iron-based superconductors evidenced by NMR and magnetization measurements. Sci. Bull. 63, 11–16 (2018)CrossRefGoogle Scholar
  35. 35.
    Leng, X., Pereiro, J., Strle, J., Dubuis, G., Bollinger, A.T., Gozar, A., Wu, J., Litombe, N., Panagopoulos, C., Pavuna, D., Božović, I.: Insulator to metal transition WO3 induced by electrolyte gating. NPJ Quantum Mater. 2, 35 (2017)ADSCrossRefGoogle Scholar
  36. 36.
    Ichimura, T., Fujiwara, K., Tanaka, H.: Dual field effects in electrolyte-gated spinel ferrite: electrostatic carrier doping and redox reactions. Sci. Rep. 4, 5818 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    Shiogai, J., Mitsuhashi, T., Nojima, T., Tsukazaki, A.: Electric-field-induced superconductivity in electrochemically etched ultrathin FeSe films on SrTiO3 and MgO. Nat. Phys. 12, 42–46 (2016)CrossRefGoogle Scholar
  38. 38.
    Asanuma, S., Xiang, P.-H., Yamada, H., Sato, H., Inoue, I.H., Akoh, H., Sawa, A., Ueno, K., Shimotani, H., Yuan, H., Kawasaki, M., Iwasa, Y.: Tuning of the metal-insulator transition in electrolyte-gated NdNiO3 thin films. Appl. Phys. Lett. 97, 142110 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    Scherwitzl, R., Zubko, P., Gutierrez Lezama, I., Ono, S., Morpurgo, A.F., Catalan, G., Triscone, J.-M.: Electric-field control of the metal-insulator transition in ultrathin NdNiO3 films. Adv. Mater. 22, 5517–5520 (2010)CrossRefGoogle Scholar
  40. 40.
    Bubel, S., Hauser, A.J., Glaudell, A.M., Mates, T.E., Stemmer, S., Chabinyc, L.: The electrochemical impact on electrostatic modulation of the metal-insulator transition in nickelates. Appl. Phys. Lett. 106, 122102 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    Dong, Y., Xu, H., Luo, Z., Zhou, H., Fong, D.D., Wu, W., Gao, C.: Effect of gate voltage polarity on the ionic liquid gating behavior of NdNiO3/NdGaO3 heterostructures. APL Mater. 5, 051101 (2017)ADSCrossRefGoogle Scholar
  42. 42.
    Dubuis, G., Yacoby, Y., Zhou, H., He, X., Bollinger, A.T., Pavuna, D., Pindak, R., Božović, I.: Oxygen displacement in cuprates under ionic liquid field-effect gating. Sci. Rep. 6, 32378 (2016)ADSCrossRefGoogle Scholar
  43. 43.
    Smith, M.G., Manthiram, A., Zhou, J., Goodenough, J.B., Markert, J.T.: Electron-doped superconductivity at 40 K in the infinite-layer compound Sr1–yNdyCu02. Nature. 351, 549–551 (1991)ADSCrossRefGoogle Scholar
  44. 44.
    Azuma, M., Hiroi, Z., Takano, M., Bando, Y., Takeda, Y.: Superconductivity at 110 K in the infinite-layer compound (Sr1-xCax)1-yCuO2. Nature. 356, 775–776 (1992)ADSCrossRefGoogle Scholar
  45. 45.
    Skanthakumar, S., Lynn, J.W., Peng, J.L., Li, Z.Y.: Antiferromagnetic order of Cu in Sm2CuO4. J. Appl. Phys. 69, 4866–4868 (1991)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Condensed Matter Physics and Materials Science DivisionBrookhaven National LaboratoryUptonUSA
  2. 2.The MacDiarmid Institute for Advanced Materials and Nanotechnology, Robinson Research InstituteVictoria University of WellingtonLower HuttNew Zealand
  3. 3.Lumentum Operations LLCMilpitasUSA
  4. 4.Applied Physics DepartmentYale UniversityNew HavenUSA

Personalised recommendations