Advertisement

Peculiarities of Magnetoresistive Properties of Co/Ag/Py Pseudo Spin Valves Under Heat Treatment

  • I. M. PazukhaEmail author
  • O. A. Koloskova
  • S. I. Protsenko
Original Paper
  • 26 Downloads

Abstract

The magnetoresistive properties of pseudo spin valves with the structure Co(5 nm)/Ag(dAg)/Py(30 nm)/Sub (Sub-amorphous glass-ceramic substrate) and Co(30 nm)/Ag(dAg)/Py(5 nm)/Sub, where Py is permalloy Ni80Fe20, dAg = 3–15 nm, was investigated. It is shown that thermal annealing at the temperature of healing defects does not change the structure of both kinds of the investigated pseudo spin valves and improves magnetoresistance. The high-temperature annealing at 750 K leads to the formation disordered solid solution Ag(Co) based on fcc-Ag lattice and affects not only the magnetoresistive curve shape in perpendicular orientation of the magnetic field but also its sign in the case of Co(5)/Ag(dAg)/Py(5)/Sub pseudo spin valve. Besides, the coercivity of the samples with dAg = 6 nm measured in their plane is the most stable within the annealing process at 750 K.

Keywords

Pseudo spin valve Annealing Magnetoresistance Coercivity 

Notes

Funding Information

This work was funded by the State Program of the Ministry of Education and Science of Ukraine 0119U100777 (2019-2021).

References

  1. 1.
    Hirohata, A., Takanashi, K.: Future perspectives for spintronic devices. J. Phys. D. Appl. Phys. 47, 193001 (2014).  https://doi.org/10.1088/0022-3727/47/19/193001 CrossRefADSGoogle Scholar
  2. 2.
    Luby, S., Anwarzai, B., Ác, V., Majkova, E., Senderáka, R.: Pseudo spin-valves with different spacer thickness as sensing elements of mechanical strain. Vacuum. 86, 718–720 (2012).  https://doi.org/10.1016/j.vacuum.2011.08.012 CrossRefADSGoogle Scholar
  3. 3.
    Wang, J.-Q., Malkinski, L.M., Hao, Y., Ross, C.A., Wiemann, J.A., O’Connor, C.J.: Fabrication of pseudo-spin-valves and 100 nm sized periodic elements for magnetic memory application. Mater. Sci. Eng. B. 76, 1–5 (2000).  https://doi.org/10.1016/S0921-5107(00)00393-7 CrossRefGoogle Scholar
  4. 4.
    He, H., Zhang, Z., Ma, B., Jin, Q.: [Co/Ni]N-based synthetic antiferromagnet with perpendicular anisotropy and its application in pseudo spin valves. IEEE Trans. Magn. 46, 1327–1330 (2010).  https://doi.org/10.1109/TMAG.2010.2043503 CrossRefADSGoogle Scholar
  5. 5.
    Kolesnikov, A.G., Wu, H., Stebliy, M.E., Ognev, A.V., Chebotkevich, L.A., Samardak, A.S., Han, X.: Hybrid magnetic anisotropy [Co/Ni]15/Cu/[Co/Pt]4 spin-valves. J. Magn. Magn. Mater. 449, 271–277 (2018).  https://doi.org/10.1016/j.jmmm.2017.10.042 CrossRefADSGoogle Scholar
  6. 6.
    Liu, E., Swerts, J., Couet, S., Mertens, S., Tomczak, Y., Lin, T., Spampinato, V., Franquet, A., Van Elshocht, S., Kar, G., Furnemont, A., De Boeck, J.: [Co/Ni]-CoFeB hybrid free layer stack materials for high density magnetic random access memory applications. Appl. Phys. Lett. 108, 132405 (2016).  https://doi.org/10.1063/1.4945089 CrossRefADSGoogle Scholar
  7. 7.
    Matthes, P., Albrecht, M.: Pseudo spin valve thin films with crossed magnetic anisotropies. Sensor. Actuat. A. 233, 275–278 (2015).  https://doi.org/10.1016/j.sna.2015.07.021 CrossRefGoogle Scholar
  8. 8.
    Guth, M., Schmerber, G., Dinia, A., Muller, D., Errahmani, H.: Giant magnetoresistance in Fe and Co based spin valve structures. Phys. Lett. A. 279, 255–260 (2011).  https://doi.org/10.1016/S0375-9601(00)00823-9 CrossRefADSGoogle Scholar
  9. 9.
    Pazukha, I.M., Shuliarenko, D.O., Pylypenko, O.V., Odnodvorets, L.V.: Concentration and heat treatment effects on magnetoresistive properties of Ag-added Ni80Fe20 film systems. J. Magn. Magn. Mater. 485, 89–94 (2019).  https://doi.org/10.1016/j.jmmm.2019.04.079 CrossRefGoogle Scholar
  10. 10.
    Chen, L., Zhou, Y., Lei, C.: Effect of sputtering parameters and sample size on giant magnetoimpedance effect in NiFe and NiFe/Cu/NiFe films. Mater. Sci. Eng. B. 172, 101–107 (2010).  https://doi.org/10.1016/j.mseb.2010.04.026 CrossRefGoogle Scholar
  11. 11.
    Urbaniak, M., Stobiecki, F., Szymanski, B.: Stability of perpendicular anisotropy in NiFe/Au/Co/Au multilayers. J. Alloys Compd. 454, 57–60 (2008).  https://doi.org/10.1016/j.jallcom.2006.12.138 CrossRefGoogle Scholar
  12. 12.
    Kharmouche, S.-M.C.’e., Bourzami, A., Layadi, A., Schmerber, G.: Structural and magnetic properties of evaporated Co/Si(100) and Co/glass thin films. J. Phys. D. Appl. Phys. 37, 2583–2587 (2004).  https://doi.org/10.1088/0022-3727/37/18/014 CrossRefADSGoogle Scholar
  13. 13.
    Ia, M., Lytvynenko, I.M., Pazukha, O.V., Pylypenko, V.V.B.: Structural-phase state, magnetoresistive and magnetic properties of permalloy films. Metallofiz. Noveishie Tekhnol. 37, 1377–1393 (2015).  https://doi.org/10.15407/mfint.37.10.1377 CrossRefGoogle Scholar
  14. 14.
    Liao, J.H., He, H., Zhang, Z.Z., Ma, B., Jin, Q.Y.: Enhancing of magnetic flux pinning in YBa2Cu3O7−x/CuO granular composites. J. Appl. Phys. 109, 023907 (2011).  https://doi.org/10.1063/1.3536476 CrossRefADSGoogle Scholar
  15. 15.
    Demydenko, M.H., Kuzmenko, A.P., Protsenko, S.I., Fedchenko, O.V.: Correlation between phase-structural state and magnetic characteristics of spin-valve systems based on Fe, Co and Au. J. Nano- Electron. Phys. 5, 04017 (2013)Google Scholar
  16. 16.
    Bakonyi, I., Péter, L.: Electrodeposited multilayer films with giant magnetoresistance (GMR): Progress and problems. Prog. Mater. Sci. 55, 107–245 (2010).  https://doi.org/10.1016/j.pmatsci.2009.07.001 CrossRefGoogle Scholar
  17. 17.
    Jiang, Y., Yao, S., Zhang, W.: [Ni80Fe20/Cu/Co/Cu] spin-valve multilayers electrodeposited on NiFe buffer layers. Thin Solid Films. 516, 3210–3216 (2008).  https://doi.org/10.1016/j.tsf.2007.12.109 CrossRefADSGoogle Scholar
  18. 18.
    Liu, S., Yu, G.-H., Yang, M.-Y., Ju, H.-L., Li, B.-H., Chen, X.-B.: Co/Pt multilayer-based pseudo spin valves with perpendicular magnetic anisotropy. Rare Metals. 33, 646–651 (2014).  https://doi.org/10.1007/s12598-014-0404-2 CrossRefGoogle Scholar
  19. 19.
    Jergel, M., Halahovets, Y., Šiffalovič, P., Végsö, K., Senderák, R., Majková, E., Luby, Š.: Stability of perpendicular anisotropy in NiFe/Au/Co/Au multilayers. J. Alloys Compd. 454, 57–60 (2008).  https://doi.org/10.1016/j.jallcom.2006.12.138 CrossRefGoogle Scholar
  20. 20.
    Cheshko, I.V., Odnodvorets, L.V., Protsenko, I.Y., Shumakova, M.O., Tkach, O.P.: Physical properties of film alloy based on ferromagnetic and noble metals (review). II. Film materials based on Co and Ag or Au. J. Nano- Electron. Phys. 8, 04028 (2016).  https://doi.org/10.21272/jnep.8(4(1)).04028 CrossRefGoogle Scholar
  21. 21.
    Gasior, W., Moser, Z., Debski, A.: Heat of formation of FeNi70, FeNi73.5 and FeNi80 ordered alloys from the homogenous region of the FeNi3 phase. J. Alloys Compd. 487, 132–137 (2009).  https://doi.org/10.1016/j.jallcom.2009.07.160 CrossRefGoogle Scholar
  22. 22.
    Wang, J.Q., Sidney, M.T., Rokitowski, J.D., Kim, N.H., Wang, K.: Magnetorefractive effect in annealed Co/Cu/Co/Fe pseudo-spin-valve thin films. J. Appl. Phys. 103, 07F316 (2008).  https://doi.org/10.1063/1.2837631 CrossRefGoogle Scholar
  23. 23.
    Freitas, P.P., Silva, F., Oliveira, N.J., Melo, L.V., Costa, L., Almeida, N.: Spin valve sensors. Sensor. Actuat. A: Phys. 81, 2–8 (2000).  https://doi.org/10.1016/S0924-4247(99)00159-4 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electronics, General and Applied PhysicsSumy State UniversitySumyUkraine
  2. 2.Faculty of Mathematics and PhysicsCharles UniversityPrague 2Czech Republic

Personalised recommendations