Advertisement

Magnetism and Conductivity Along Structural Domain Walls of SrTiO3

  • Yiftach Frenkel
  • Yanwu Xie
  • Harold Y. Hwang
  • Beena KaliskyEmail author
Original Paper
  • 87 Downloads

Abstract

The interface between the oxide insulators LaAlO3 and SrTiO3 (LAO/STO) hosts a two-dimensional electron gas. The combination of interfacial conductivity and superconductivity at ultra-low temperatures with the physical phenomena of the oxide parent materials has fueled extensive research in the field since its discovery in 2004. Scanning superconducting quantum interference device (SQUID) measurements have shown that structural domain walls, formed below 105 K, modulate the current flow at the interface and recently revealed weak magnetic signals along the same domain structure. Here we use scanning SQUID to investigate the temperature dependence of different electronic properties of the LAO/STO interface. We find correlation between magnetism and conductivity, which are both spatially modulated on the domain structure. This data suggests a possible relation between the populations of electrons participating in each order.

Keywords

Oxide interfaces Magnetism Conductivity Scanning SQUID microscopy Polarity Ferroelectricity 

Notes

Funding Information

Y.F. and B.K. were supported by the European Research Council Grant No. ERC-2014-STG-639792, the Israeli Science Foundation grant no. ISF-1281/17, and the QuantERA ERA-NET Cofund in Quantum Technologies (Project No. 731473). Y.X. and H.Y.H. were supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under contract no. DE-AC02-76SF00515.

References

  1. 1.
    Sakudo, T., Unoki, H.: Dielectric properties of SrTiO3 at low temperatures. Phys. Reivew Lett. 26, 851–853 (1971).  https://doi.org/10.1103/PhysRevLett.26.851 ADSCrossRefGoogle Scholar
  2. 2.
    Koonce, C.S., Cohen, M.L., Schooley, J.F., Hosler, W.R., Pfeiffer, E.R.: Superconducting transition temperatures of semiconducting SrTiO3. Phys. Rev. 163, 380–390 (1967).  https://doi.org/10.1103/PhysRev.163.380 ADSCrossRefGoogle Scholar
  3. 3.
    Edge, J.M., Kedem, Y., Aschauer, U., Spaldin, N.A., Balatsky, A.V.: Quantum critical origin of the superconducting dome in SrTiO3. Phys. Rev. Lett. 115, 1–5 (2015).  https://doi.org/10.1103/PhysRevLett.115.247002 CrossRefGoogle Scholar
  4. 4.
    Cowley, R.A.: Lattice dynamics and phase transitions of strontium titanate. Phys. Rev. 134, A981–A997 (1964)ADSCrossRefGoogle Scholar
  5. 5.
    Rowley, S.E., Spalek, L.J., Smith, R.P., Dean, M.P.M., Itoh, M., Scott, J.F., Lonzarich, G.G., Saxena, S.S.: Ferroelectric quantum criticality. Nat. Phys. 10, 367–372 (2014).  https://doi.org/10.1038/nphys2924 CrossRefGoogle Scholar
  6. 6.
    Salje, E.K.H., Aktas, O., Carpenter, M.A., Laguta, V.V., Scott, J.F.: Domains within domains and walls within walls: evidence for polar domains in cryogenic SrTiO3. Phys. Rev. Lett. 111, 247603 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    Frenkel, Y., Haham, N., Shperber, Y., Bell, C., Xie, Y., Chen, Z., Hikita, Y., Hwang, H.Y., Salje, E.K.H., Kalisky, B.: Imaging and tuning polarity at SrTiO3 domain walls. Nat. Mater. 16, 1203 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    Ohtomo, A., Hwang, H.Y.: A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature. 427, 423–426 (2004).  https://doi.org/10.1038/nature04773 ADSCrossRefGoogle Scholar
  9. 9.
    Zubko, P., Gariglio, S., Gabay, M., Ghosez, P., Triscone, J.-M.: Interface physics in complex oxide heterostructures. Annu. Rev. Condens. Matter Phys. 2, 141–165 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    Persky, E., Kalisky, B., Scanning, S.Q.U.I.D.: View of oxide interfaces. Adv. Mater. 30, 1–9 (2018).  https://doi.org/10.1002/adma.201706653 CrossRefGoogle Scholar
  11. 11.
    Wissberg, S., Kalisky, B.: Large-scale modulation in the superconducting properties of thin films due to domains in the SrTiO3 substrate. Phys. Rev. B. 95, 144510 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    Noad, H., Spanton, E.M., Nowack, K.C., Inoue, H., Kim, M., Merz, T.A., Bell, C., Hikita, Y., Xu, R., Liu, W., Vailionis, A., Hwang, H.Y., Moler, K.A.: Variation in superconducting transition temperature due to tetragonal domains in two-dimensionally doped SrTiO3. Phys. Rev. B - Condens. Matter Mater. Phys. 94, 1–12 (2016).  https://doi.org/10.1103/PhysRevB.94.174516 CrossRefGoogle Scholar
  13. 13.
    Kalisky, B., Spanton, E.M., Noad, H., Kirtley, J.R., Nowack, K.C., Bell, C., Sato, H.K., Hosoda, M., Xie, Y., Hikita, Y., Woltmann, C., Pfanzelt, G., Jany, R., Richter, C., Hwang, H.Y., Mannhart, J., Moler, K.A.: Locally enhanced conductivity due to the tetragonal domain structure in LAO/STO heterointerfaces. Nat. Mater. 12, 1091 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    Frenkel, Y., Haham, N., Shperber, Y., Bell, C., Xie, Y., Chen, Z., Hikita, Y., Hwang, H.Y., Kalisky, B.: Anisotropic transport at the LaAlO 3 /SrTiO 3 interface explained by microscopic imaging of channel-flow over SrTiO 3 domains. ACS Appl. Mater. Interfaces. 8, 12514–12519 (2016)CrossRefGoogle Scholar
  15. 15.
    Christensen, D.V., Frenkel, Y., Chen, Y.Z., Xie, Y.W., Chen, Z.Y., Hikita, Y., Smith, A., Klein, L., Hwang, H.Y., Pryds, N., Kalisky, B.: Strain-tunable magnetism at oxide domain walls. Nat. Phys. 15, 269–274 (2019).  https://doi.org/10.1038/s41567-018-0363-x CrossRefGoogle Scholar
  16. 16.
    Y.-Y. Pai, A. Tylan-Tyler, P. Irvin, J. Levy, LaAlO3/SrTiO3: a Tale of Two Magnetisms, (2016) 1–46Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yiftach Frenkel
    • 1
  • Yanwu Xie
    • 2
    • 3
    • 4
  • Harold Y. Hwang
    • 2
    • 3
  • Beena Kalisky
    • 1
    Email author
  1. 1.Physics Department, Institute of Nanotechnology and Advanced MaterialsBar Ilan UniversityRamat-GanIsrael
  2. 2.Stanford Institute for Materials and Energy SciencesSLAC National Accelerator LaboratoryMenlo ParkUSA
  3. 3.Department of Applied Physics, Geballe Laboratory for Advanced MaterialsStanford UniversityStanfordUSA
  4. 4.Department of PhysicsZhejiang UniversityHangzhouChina

Personalised recommendations