Advertisement

Study of the Structural and Physical Properties of Co3O4 Nanoparticles Synthesized by Co-Precipitation Method

  • A. M. Abdallah
  • R. AwadEmail author
Original Paper
  • 21 Downloads

Abstract

Tricobalt tetroxide (Co3O4) nanoparticles were synthesized by co-precipitation method. The structure, morphology, purity, real compositions, and functional groups of the prepared nanoparticles were determined by X-ray diffraction (XRD), transmission electron microscope (TEM), energy-dispersive X-ray (EDX) analysis, and Fourier transform infrared (FTIR) spectroscopy, respectively. The results confirm the formation of pure spinel structure of the Co3O4 nanoparticles with space group Fd3m and average spherical particle size of 58 nm. The optical properties were explored by ultraviolet–visible spectroscopy (UV–vis) and photoluminescence spectroscopy (PL). Two absorption peaks were aroused in ultraviolet and visible ranges accompanied by two band gap energies and an Urbach energy. Moreover, two emission peaks in agreement with the calculated band gap energies were observed in the PL spectrum. A weak ferromagnetic behavior was investigated by magnetic hysteresis (M-H) loop at room temperature. The electrical conductivity was measured in the temperature range 313–573 K. A normal semiconductor behavior was detected. The dielectric properties were studied under the variation of temperature and frequency. Then, the dielectric constant, dielectric loss, ac conductivity, relaxation process, and Nyquist plots were discussed.

Keywords

Co3O4 nanoparticles Co-precipitation method M-H loop Conductivity Relaxation process 

Notes

Acknowledgments

This research was accomplished in the Specialized Materials Science Lab and Advanced Nanomaterials Research Lab, Physics Department, Faculty of Science, Beirut Arab University, Lebanon.

References

  1. 1.
    Thota, S., Kumar, A., Kumar, J.: Optical, electrical and magnetic properties of Co3O4 nanocrystallites obtained by thermal decomposition of sol–gel derived oxalates. Mater. Sci. Eng. B. 164, 30–37 (2009).  https://doi.org/10.1016/j.mseb.2009.06.002 CrossRefGoogle Scholar
  2. 2.
    Seidov, Z., Açıkgöz, M., Kazan, S., Mikailzade, F.: Magnetic properties of Co3O4 polycrystal powder. Ceram. Int. 42, 12928–12931 (2016).  https://doi.org/10.1016/j.ceramint.2016.05.063 CrossRefGoogle Scholar
  3. 3.
    Ibrahim, E.M.M., Abu-Dief, A.M., Elshafaie, A., Ahmed, A.M.: Electrical, thermoelectrical and magnetic properties of approximately 20-nm Ni-Co-O nanoparticles and investigation of their conduction phenomena. Mater. Chem. Phys. 192, 41–47 (2017).  https://doi.org/10.1016/j.matchemphys.2017.01.054 CrossRefGoogle Scholar
  4. 4.
    Gunnewiek, R.F.K., Mendes, C.F., Kiminami, R.H.G.A.: Synthesis of spinel cobalt oxide nanoparticles using a modified polymeric precursor method. Adv. Powder Technol. 27, 1056–1061 (2016).  https://doi.org/10.1016/j.apt.2016.03.013 CrossRefGoogle Scholar
  5. 5.
    Packiaraj, R., Devendran, P., Venkatesh, K.S., Asath bahadur, S., Manikandan, A., Nallamuthu, N.: Electrochemical investigations of magnetic Co3O4 nanoparticles as an active electrode for supercapacitor applications. J. Supercond. Nov. Magn. 32, 2427 (2018).  https://doi.org/10.1007/s10948-018-4963-6 CrossRefGoogle Scholar
  6. 6.
    Liu, B., Zhang, X., Shioyama, H., Mukai, T., Sakai, T., Xu, Q.: Converting cobalt oxide subunits in cobalt metal-organic framework into agglomerated Co3O4 nanoparticles as an electrode material for lithium ion battery. J. Power Sources. 195, 857–861 (2010).  https://doi.org/10.1016/j.jpowsour.2009.08.058 ADSCrossRefGoogle Scholar
  7. 7.
    Pal, J., Chauhan, P.: Study of physical properties of cobalt oxide (Co3O4) nanocrystals. Mater. Charact. 61, 575–579 (2010).  https://doi.org/10.1016/j.matchar.2010.02.017 CrossRefGoogle Scholar
  8. 8.
    Ravi Dhas, C., Venkatesh, R., Jothivenkatachalam, K., Nithya, A., Suji Benjamin, B., Moses Ezhil Raj, A., Jeyadheepan, K., Sanjeeviraja, C.: Visible light driven photocatalytic degradation of Rhodamine B and Direct Red using cobalt oxide nanoparticles. Ceram. Int. 41, 9301–9313 (2015).  https://doi.org/10.1016/j.ceramint.2015.03.238 CrossRefGoogle Scholar
  9. 9.
    Tharayil, N.J., Raveendran, R., Vaidyan, A.V., Chithra, P.G.: Optical, electrical and structural studies of nickel-cobalt oxide nanoparticles. IJEMS. 156(Dec. 2008), (2008)Google Scholar
  10. 10.
    Lu, J., Moon, K.-S., Xu, J., Wong, C.P.: Synthesis and dielectric properties of novel high-K polymer composites containing in-situ formed silver nanoparticles for embedded capacitor applications. J. Mater. Chem. 16, 1543–1548 (2006).  https://doi.org/10.1039/B514182F CrossRefGoogle Scholar
  11. 11.
    Huang, X., Jiang, P.: Core–shell structured high-k polymer nanocomposites for energy storage and dielectric applications. Adv. Mater. 27, 546–554 (2015).  https://doi.org/10.1002/adma.201401310 CrossRefGoogle Scholar
  12. 12.
    Koseoglu, Y., Kurtulus, F., Kockar, H., Guler, H., Karaagac, O., Kazan, S., Aktas, B.: Magnetic characterizations of cobalt oxide nanoparticles. J. Supercond. Nov. Magn. 25, 2783–2787 (2012).  https://doi.org/10.1007/s10948-011-1265-7 CrossRefGoogle Scholar
  13. 13.
    Shafiu, S., Baykal, A., Sözeri, H., Toprak, M.S.: Triethanolamine assisted hydrothermal synthesis of superparamagnetic Co3O4 nanoparticles and their characterizations. J. Supercond. Nov. Magn. 27, 2117–2122 (2014).  https://doi.org/10.1007/s10948-014-2562-8 CrossRefGoogle Scholar
  14. 14.
    de Alba, J.R., Martínez, J.R., Guerrero, A.L., Ortega-Zarzosa, G.: Effect of the silica cover on the properties of Co3O4 nanoparticles. J. Supercond. Nov. Magn. 29, 2651–2658 (2016).  https://doi.org/10.1007/s10948-016-3595-y CrossRefGoogle Scholar
  15. 15.
    Wadekar, K.F., Nemade, K.R., Waghuley, S.A.: Chemical Synthesis of Cobalt Oxide (Co3O4) Nanoparticles Using Co-Precipitation Method, vol. 7, p. 3 (2017)Google Scholar
  16. 16.
    Makhlouf, S.A., Bakr, Z.H., Aly, K.I., Moustafa, M.S.: Structural, electrical and optical properties of Co3O4 nanoparticles. Superlattice. Microst. 64, 107–117 (2013).  https://doi.org/10.1016/j.spmi.2013.09.023 ADSCrossRefGoogle Scholar
  17. 17.
    Allaedini, G., Muhammad, A.: Study of influential factors in synthesis and characterization of cobalt oxide nanoparticles. J. Nanostructure Chem. 3(77), (2013).  https://doi.org/10.1186/2193-8865-3-77
  18. 18.
    Bindu Duvuru, H., Alla, S.K., Shaw, S.K., Meena, S.S., Gupta, N., Prasad, B.B.V.S.V., Kothawale, M.M., Kumar, M.K., Prasad, N.K.: Magnetic and dielectric properties of Zn substituted cobalt oxide nanoparticles. Ceram. Int. 45, 16512–16520 (2019).  https://doi.org/10.1016/j.ceramint.2019.05.185 CrossRefGoogle Scholar
  19. 19.
    Rani, S., Sharma, Y., Varma, G.D.: Mixed magnetic phases in Co3O4 nanoparticles synthesized by co-precipitation method. AIP Conf. Proc. 1591, 526–528 (2014).  https://doi.org/10.1063/1.4872662 ADSCrossRefGoogle Scholar
  20. 20.
    Sharifi, S.L., Shakur, H.R., Mirzaei, A., Hosseini, M.H.: Characterization of cobalt oxide Co3O4 nanoparticles prepared by various methods: effect of calcination temperatures on size, dimension and catalytic decomposition of hydrogen peroxide. Int. J. Nanosci. Nanotechnol. 9, 51–58 (2013)Google Scholar
  21. 21.
    Prabaharan, D.D.M., Sadaiyandi, K., Mahendran, M., Sagadevan, S.: Precipitation method and characterization of cobalt oxide nanoparticles. Appl. Phys. A Mater. Sci. Process. 123(264), (2017).  https://doi.org/10.1007/s00339-017-0786-8
  22. 22.
    Sumathi, S., Nehru, M.: Synthesis, characterization, and influence of fuel on dielectric and magnetic properties of cobalt ferrite nanoparticles. J. Supercond. Nov. Magn. 29, 1317–1323 (2016).  https://doi.org/10.1007/s10948-016-3416-3 CrossRefGoogle Scholar
  23. 23.
    Ahmad, Z., Atiq, S., Abbas, S.K., Ramay, S.M., Riaz, S., Naseem, S.: Structural and complex impedance spectroscopic studies of Mg-substituted CoFe2O4. Ceram. Int. 42, 18271–18282 (2016).  https://doi.org/10.1016/j.ceramint.2016.08.154 CrossRefGoogle Scholar
  24. 24.
    Joshi, J.H., Kanchan, D.K., Joshi, M.J., Jethva, H.O., Parikh, K.D.: Dielectric relaxation, complex impedance and modulus spectroscopic studies of mix phase rod like cobalt sulfide nanoparticles. Mater. Res. Bull. 93, 63–73 (2017).  https://doi.org/10.1016/j.materresbull.2017.04.013 CrossRefGoogle Scholar
  25. 25.
    Alsayed, Z., Badawi, M.S., Awad, R.: Characterization of zinc ferrite nanoparticles capped with different PVP concentrations. J. Electron. Mater. 48, 4925–4933 (2019).  https://doi.org/10.1007/s11664-019-07288-2 ADSCrossRefGoogle Scholar
  26. 26.
    Moro, F., Yu Tang, S.V., Tuna, F., Lester, E.: Magnetic properties of cobalt oxide nanoparticles synthesised by a continuous hydrothermal method. J. Magn. Magn. Mater. 348, 1–7 (2013).  https://doi.org/10.1016/j.jmmm.2013.07.064 ADSCrossRefGoogle Scholar
  27. 27.
    Al Boukhari, J., Zeidan, L., Khalaf, A., Awad, R.: Synthesis, characterization, optical and magnetic properties of pure and Mn, Fe and Zn doped NiO nanoparticles. Chem. Phys. 516, 116–124 (2019).  https://doi.org/10.1016/j.chemphys.2018.07.046 CrossRefGoogle Scholar
  28. 28.
    Sharrouf, M., Awad, R., Marhaba, S., El-Said Bakeer, D.: Structural, optical and room temperature magnetic study of Mn-doped ZnO nanoparticles. Nano. 11, 1650042 (2015).  https://doi.org/10.1142/S1793292016500429 CrossRefGoogle Scholar
  29. 29.
    Tharayil, N.J., Sagar, S., Raveendran, R., Vaidyan, A.V.: Dielectric studies of nanocrystalline nickel–cobalt oxide. Phys. B Condens. Matter. 399, 1–8 (2007).  https://doi.org/10.1016/j.physb.2007.03.037 ADSCrossRefGoogle Scholar
  30. 30.
    Diallo, A., Beye, A.C., Doyle, T.B., Park, E., Maaza, M.: Green synthesis of Co3O4 nanoparticles via Aspalathus linearis: physical properties. Green Chem. Lett. Rev. 8, 30–36 (2015).  https://doi.org/10.1080/17518253.2015.1082646 CrossRefGoogle Scholar
  31. 31.
    De-Sheng, X., Yu, G., Wen-Jing, L., Ming-Su, S., Zai-Wen, L.: Photoluminescence property of Co3O4 nanowires. Chin. Phys. Lett. 24, 1756–1758 (2007).  https://doi.org/10.1088/0256-307X/24/6/089 ADSCrossRefGoogle Scholar
  32. 32.
    Zhu, H.T., Luo, J., Liang, J.K., Rao, G.H., Li, J.B., Zhang, J.Y., Du, Z.M.: Synthesis and magnetic properties of antiferromagnetic Co3O4 nanoparticles. Phys. B Condens. Matter. 403, 3141–3145 (2008).  https://doi.org/10.1016/j.physb.2008.03.024 ADSCrossRefGoogle Scholar
  33. 33.
    Gopinath, S., Sivakumar, K., Karthikeyen, B., Ragupathi, C., Sundaram, R.: Structural, morphological, optical and magnetic properties of Co3O4 nanoparticles prepared by conventional method. Physica E. 81, 66–70 (2016).  https://doi.org/10.1016/j.physe.2016.02.006 ADSCrossRefGoogle Scholar
  34. 34.
    Sinkó, K., Szabó, G., Zrínyi, M.: Liquid-phase synthesis of cobalt oxide nanoparticles. J. Nanosci. Nanotechnol. 11, 4127–4135 (2011).  https://doi.org/10.1166/jnn.2011.3875 CrossRefGoogle Scholar
  35. 35.
    Sahoo, S.C., Venkataramani, N., Prasad, S., Bohra, M., Krishnan, R.: Stability of nonthermodynamic equilibrium cation distribution frozen during pulsed laser deposition of Co-ferrite thin films. Appl. Phys. A Mater. Sci. Process. 98, 889–894 (2010).  https://doi.org/10.1007/s00339-009-5471-0 ADSCrossRefGoogle Scholar
  36. 36.
    Chikazumi, S., Jr, C.D.G.: Physics of Ferromagnetism. Oxford University Press, Oxford (1997)Google Scholar
  37. 37.
    Al-Qirby, L.M., Radiman, S., Siong, C.W., Ali, A.M.: Sonochemical synthesis and characterization of Co3O4 nanocrystals in the presence of the ionic liquid [EMIM][BF 4 ]. Ultrason. Sonochem. 38, 640–651 (2017).  https://doi.org/10.1016/j.ultsonch.2016.08.016 CrossRefGoogle Scholar
  38. 38.
    Han, D.H., Wang, J.P., Luo, H.L.: Crystallite size effect on saturation magnetization of fine ferrimagnetic particles. J. Magn. Magn. Mater. 136, 176–182 (1994).  https://doi.org/10.1016/0304-8853(94)90462-6 ADSCrossRefGoogle Scholar
  39. 39.
    Ahmad, M.M.: Enhanced lithium ionic conductivity and study of the relaxation and giant dielectric properties of spark plasma sintered Li5La3Nb2O12 nanomaterials. Ceram. Int. 5(PA), 6398–6408 (2015).  https://doi.org/10.1016/j.ceramint.2015.01.077 CrossRefGoogle Scholar
  40. 40.
    Mansour, S.F., Abdo, M.A.: Electrical modulus and dielectric behavior of Cr3+ substituted Mg–Zn nanoferrites. J. Magn. Magn. Mater. 428, 300–305 (2017).  https://doi.org/10.1016/j.jmmm.2016.12.039 ADSCrossRefGoogle Scholar
  41. 41.
    Gokul, B., Matheswaran, P., Abhirami, K.M., Sathyamoorthy, R.: Structural and dielectric properties of NiO nanoparticles. J. Non-Cryst. Solids. 363, 161–166 (2013).  https://doi.org/10.1016/j.jnoncrysol.2012.12.007 ADSCrossRefGoogle Scholar
  42. 42.
    Dakhel, A.A.: Dielectric relaxation behaviour of Li and La co-doped NiO ceramics. Ceram. Int. 39(4), 4263–4268 (2013).  https://doi.org/10.1016/j.ceramint.2012.10.278 CrossRefGoogle Scholar
  43. 43.
    Nandan, K.R., Kumar, A.R.: Structural and electrical properties of Ca0.9Dy0.1MnO3 prepared by sol-gel technique. J. Mater. Res. Technol. 8, 2996–3003 (2019).  https://doi.org/10.1016/j.jmrt.2017.05.020 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Physics Department, Faculty of ScienceBeirut Arab UniversityBeirutLebanon

Personalised recommendations