Advertisement

Enhanced Structural, Optical, and Multiferroic Properties of Rod-Like Bismuth Iron Oxide Nanoceramics by Dopant Lanthanum

  • Naimeh Badvi Delfard
  • Hamed MalekiEmail author
  • Asma Mohammadi Badizi
  • Majid Taraz
Original Paper
  • 35 Downloads

Abstract

Herein, the influence of lanthanum concentration on the structural, thermal, optical, ferroelectric, and magnetic properties of Bi1-xLaxFeO3 (BLFO, x = 0, 0.05, 0.1, 0.15, 0.2, and 0.25) nanorods prepared by hydrothermal method was investigated. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy were performed to study the structural properties of BLFO nanoparticles for different lanthanum concentration. The Rietveld refinement and analysis of crystal structure revealed a single-phase perovskite structure with space group R3c. Transmission electron microscope (TEM) image of bismuth iron oxide nanorods exhibits average diameter of ~ 40 nm and length of ~ 2 μm. The ferroelectric Curie temperature of 833 °C (829 °C) was determined for BiFeO3 (Bi0.8La0.2FeO3) by differential thermal analysis (DTA). Diffuse reflectance UV-Vis spectra indicated that the optical band gap is decreased by increasing the lanthanum concentration. The ferroelectric properties of BiFeO3 nanoparticles also improved by adding lanthanum into the structure of bismuth iron oxide. Moreover, J-E curves showed that lanthanum doping can significantly decrease the leakage current of bismuth ferrite nanorods. Finally, vibrating sample magnetometer (VSM) measurements indicated that the weak ferromagnetic behavior is observed for as-prepared BLFO nanorods with x ≤ 0.15. However, for the 20 mol% lanthanum doping, a magnetic transition from weak ferromagnetic to antiferromagnetic occurred.

Keywords

Multiferroics Bismuth iron oxide Nanorods Hydrothermal method Lanthanum doping 

Notes

References

  1. 1.
    Eerenstein, W., Mathur, N.D., Scott, J.F.: Nature. 442(7104), 759 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    Hill, N.A.: J. Phys. Chem. B. 104(29), 6694 (2000)CrossRefGoogle Scholar
  3. 3.
    Zhao, T., Scholl, A., Zavaliche, F., Lee, K., Barry, M., Doran, A., Cruz, M.P., Chu, Y.H., Ederer, C., Spaldin, N.A., Das, R.R., Kim, D.M., Baek, S.H., Eom, C.B., Ramesh, R.: Nat. Mater. 5(10), 823 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    Wang, J., Neaton, J.B., Zheng, H., Nagarajan, V., Ogale, S.B., Liu, B., Viehland, D., Vaithyanathan, V., Schlom, D.G., Waghmare, U.V., Spaldin, N.A., Rabe, K.M., Wuttig, M., Ramesh, R.: Science (New York, N.Y.). 299(5613), 1719 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    Liu, Y., Qi, Y., Zhou, P., Guan, C., Chen, H., Wang, J., Ma, Z., Zhang, T., Liu, Y.: J. Phys. D. Appl. Phys. 51(2), 025303 (2018)ADSCrossRefGoogle Scholar
  6. 6.
    Maleki, H.: J. Mater. Sci. Mater. Electron. 29(14), 11862 (2018)CrossRefGoogle Scholar
  7. 7.
    Falahatnezhad, S., Maleki, H.: J. Mater. Sci. Mater. Electron. 29(20), 17360 (2018)CrossRefGoogle Scholar
  8. 8.
    Maleki, H.: J. Magn. Magn. Mater. 458, 277 (2018)ADSCrossRefGoogle Scholar
  9. 9.
    Maleki, H., Falahatnezhad, S., Taraz, M.: J. Supercond. Nov. Magn. 31(10), 0 (2018)CrossRefGoogle Scholar
  10. 10.
    Yotburut, B., Thongbai, P., Yamwong, T., Maensiri, S.: Ceram. Int. 43(7), 5616 (2017)CrossRefGoogle Scholar
  11. 11.
    Dhanalakshmi, R., Muneeswaran, M., Shalini, K., Giridharan, N.V.: Mater. Lett. 165, 205 (2016)CrossRefGoogle Scholar
  12. 12.
    Chybczynska, K., Blaszyk, M., Hilczer, B., Lucinski, T., Matczak, M., Andrzejewski, B.: Mater. Res. Bull. 86, 178 (2017)CrossRefGoogle Scholar
  13. 13.
    Ma, J., Hu, J., Li, Z., Nan, C.-W.: Adv. Mater. 23(9), 1062 (2011)CrossRefGoogle Scholar
  14. 14.
    Martin, L.W., Crane, S.P., Chu, Y.-H., Holcomb, M.B., Gajek, M., Huijben, M., Yang, C.-H., Balke, N., Ramesh, R.: J. Phys. Condens. Matter. 20(43), 434220 (2008)CrossRefGoogle Scholar
  15. 15.
    Nan, C.-W., Bichurin, M.I., Dong, S., Viehland, D., Srinivasan, G.: J. Appl. Phys. 103(3), 031101 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    Nechache, R., Harnagea, C., Li, S., Cardenas, L., Huang, W., Chakrabartty, J., Rosei, F.: Nat. Photonics. 9(1), 61 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    Hu, J.-M., Chen, L.-Q., Nan, C.-W.: Adv. Mater. 28(1), 15 (2016)CrossRefGoogle Scholar
  18. 18.
    Silambarasu, A., Manikandan, A., Balakrishnan, K.: J. Supercond. Nov. Magn. 30(9), 2631 (2017)CrossRefGoogle Scholar
  19. 19.
    Asiri, S., Sertkol, M., Güngüneş, H., Amir, M., Manikandan, A., Ercan, İ., Baykal, A.: J. Inorg. Organomet. Polym. Mater. 28(4), 1587 (2018)CrossRefGoogle Scholar
  20. 20.
    Sonia, M.M.L., Anand, S., Blessi, S., Pauline, S., Manikandan, A.: Ceram. Int. 44(18), 22068 (2018)CrossRefGoogle Scholar
  21. 21.
    Maleki, H., Kazemeini, M., Larimi, A.S., Khorasheh, F.: J. Ind. Eng. Chem. 47, 399 (2017)CrossRefGoogle Scholar
  22. 22.
    Smolenskii, G.A., Bokov, V.A.: J. Appl. Phys. 35(3), 915 (1964)ADSCrossRefGoogle Scholar
  23. 23.
    Fischer, P., Polomska, M., Sosnowska, I., Szymanski, M.: J. Phys. C Solid State Phys. 13(10), 1931 (1980)ADSCrossRefGoogle Scholar
  24. 24.
    Maleki, H., Zakeri, M., Fathi, R.: Appl. Phys. A. 124(11), 728 (2018)ADSCrossRefGoogle Scholar
  25. 25.
    Cheng, Z.X., Wang, X.L., Dou, S.X., Kimura, H., Ozawa, K.: J. Appl. Phys. 104(11), 116109 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    Scott, J.F., Blinc, R.: J. Phys. Condens. Matter. 23(11), 113202 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    Chen, Z., Liu, J., Qi, Y., Chen, D., Hsu, S.-L., Damodaran, A.R., He, X., N’Diaye, A.T., Rockett, A., Martin, L.W.: Nano Lett. 15(10), 6506 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    Bai, X., Wei, J., Tian, B., Liu, Y., Reiss, T., Guiblin, N., Gemeiner, P., Dkhil, B., Infante, I.C.: J. Phys. Chem. C. 120(7), 3595 (2016)CrossRefGoogle Scholar
  29. 29.
    Catalan, G., Scott, J.F.: Adv. Mater. 21(24), 2463 (2009)CrossRefGoogle Scholar
  30. 30.
    Yi, H.T., Choi, T., Choi, S.G., Oh, Y.S., Cheong, S.-W.: Adv. Mater. 23(30), 3403 (2011)CrossRefGoogle Scholar
  31. 31.
    Yang, S.Y., Martin, L.W., Byrnes, S.J., Conry, T.E., Basu, S.R., Paran, D., Reichertz, L., Ihlefeld, J., Adamo, C., Melville, A., Chu, Y.-H., Yang, C.-H., Musfeldt, J.L., Schlom, D.G., Ager, J.W., Ramesh, R.: Appl. Phys. Lett. 95(6), 062909 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    Gao, F., Chen, X.Y., Yin, K.B., Dong, S., Ren, Z.F., Yuan, F., Yu, T., Zou, Z.G., Liu, J.-M.: Adv. Mater. 19(19), 2889 (2007)CrossRefGoogle Scholar
  33. 33.
    Li, S., Lin, Y.-H., Zhang, B.-P., Wang, Y., Nan, C.-W.: J. Phys. Chem. C. 114(7), 2903 (2010)CrossRefGoogle Scholar
  34. 34.
    Ravichandran, A.T., Srinivas, J., Karthick, R., Manikandan, A., Baykal, A.: Ceram. Int. 44(11), 13247 (2018)CrossRefGoogle Scholar
  35. 35.
    Rajmohan, S., Manikandan, A., Jeseentharani, V., Arul Antony, S., Pragasam, J.: J. Nanosci. Nanotechnol. 16(2), 1650 (2016)CrossRefGoogle Scholar
  36. 36.
    Rajmohan, S., Jeseentharani, V., Manikandan, A., Pragasam, J.: Nanosci. Nanotechnol. Lett. 8(5), 393 (2016)CrossRefGoogle Scholar
  37. 37.
    Ravichandran, A.T., Srinivas, J., Manikandan, A., Baykal, A.: J. Supercond. Nov. Magn. 32(6), 1663 (2019)CrossRefGoogle Scholar
  38. 38.
    Seidel, J., Maksymovych, P., Batra, Y., Katan, A., Yang, S.-Y., He, Q., Baddorf, A.P., Kalinin, S.V., Yang, C.-H., Yang, J.-C., Chu, Y.-H., Salje, E.K.H., Wormeester, H., Salmeron, M., Ramesh, R.: Phys. Rev. Lett. 105(19), 197603 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    Basiri, M.H., Shokrollahi, H., Isapour, G.: J. Magn. Magn. Mater. 354, 184 (2014)ADSCrossRefGoogle Scholar
  40. 40.
    Mohammadi, S., Shokrollahi, H., Basiri, M.H.: J. Magn. Magn. Mater. 375, 38 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    Maleki, H., Zare, S., Fathi, R.: J. Supercond. Nov. Magn. 31(8), 2539 (2018)CrossRefGoogle Scholar
  42. 42.
    Yan, F., Lai, M.-O., Lu, L., Zhu, T.-J.: J. Phys. D. Appl. Phys. 44(43), 435302 (2011)ADSCrossRefGoogle Scholar
  43. 43.
    Singh, S.K., Maruyama, K., Ishiwara, H.: J. Phys. D. Appl. Phys. 40(9), 2705 (2007)ADSCrossRefGoogle Scholar
  44. 44.
    Lazenka, V.V., Lorenz, M., Modarresi, H., Brachwitz, K., Schwinkendorf, P., Böntgen, T., Vanacken, J., Ziese, M., Grundmann, M., Moshchalkov, V.V.: J. Phys. D. Appl. Phys. 46(17), 175006 (2013)ADSCrossRefGoogle Scholar
  45. 45.
    Wang, D., Wang, M., Liu, F., Cui, Y., Zhao, Q., Sun, H., Jin, H., Cao, M.: Ceram. Int. 41(7), 8768 (2015)CrossRefGoogle Scholar
  46. 46.
    Sun, W., Li, J.-F., Yu, Q., Cheng, L.-Q.: J. Mater. Chem. C. 3(9), 2115 (2015)CrossRefGoogle Scholar
  47. 47.
    Zhou, J.-P., Yang, R.-L., Xiao, R.-J., Chen, X.-M., Deng, C.-Y.: Mater. Res. Bull. 47(11), 3630 (2012)CrossRefGoogle Scholar
  48. 48.
    Chen, X.-Z., Qiu, Z.-C., Zhou, J.-P., Zhu, G., Bian, X.-B., Liu, P.: Mater. Chem. Phys. 126(3), 560 (2011)CrossRefGoogle Scholar
  49. 49.
    Biasotto, G., Simões, A., Foschini, C., Antônio, S., Zaghete, M., Varela, J.: Process Appl Ceram. 5(3), 171 (2011)CrossRefGoogle Scholar
  50. 50.
    Azam, A., Jawad, A., Ahmed, A.S., Chaman, M., Naqvi, A.H.: J. Alloys Compd. 509(6), 2909 (2011)CrossRefGoogle Scholar
  51. 51.
    Jesuvathy Sornalatha, D., Murugakoothan, P.: Mater. Lett. 124, 219 (2014)CrossRefGoogle Scholar
  52. 52.
    Xu, J.-H., Ke, H., Jia, D.-C., Wang, W., Zhou, Y.: J. Alloys Compd. 472(1–2), 473 (2009)CrossRefGoogle Scholar
  53. 53.
    Rangi, M., Sanghi, S., Jangra, S., Kaswan, K., Khasa, S., Agarwal, A.: Ceram. Int. 43(15), 12095 (2017)CrossRefGoogle Scholar
  54. 54.
    Palai, R., Katiyar, R.S., Schmid, H., Tissot, P., Clark, S.J., Robertson, J., Redfern, S.A.T., Catalan, G., Scott, J.F.: Phys. Rev. B. 77(1), 014110 (2008)ADSCrossRefGoogle Scholar
  55. 55.
    Maleki, H., Haselpour, M., Fathi, R.: J. Mater. Sci. Mater. Electron. 29(5), 4320 (2018)CrossRefGoogle Scholar
  56. 56.
    Chu, Y.-H., Martin, L.W., Holcomb, M.B., Gajek, M., Han, S.-J., He, Q., Balke, N., Yang, C.-H., Lee, D., Hu, W., Zhan, Q., Yang, P.-L., Fraile-Rodríguez, A., Scholl, A., Wang, S.X., Ramesh, R.: Nat. Mater. 7(6), 478 (2008)ADSCrossRefGoogle Scholar
  57. 57.
    Ramachandran, B., Rao, M.S.R.: Appl. Phys. Lett. 95(14), 142505 (2009)ADSCrossRefGoogle Scholar
  58. 58.
    Wang, Y., Jiang, Q., He, H., Nan, C.-W.: Appl. Phys. Lett. 88(14), 142503 (2006)ADSCrossRefGoogle Scholar
  59. 59.
    Valan, M.F., Manikandan, A., Antony, S.A.: J. Nanosci. Nanotechnol. 15(6), 4580 (2015)CrossRefGoogle Scholar
  60. 60.
    Jayasree, S., Manikandan, A., Mohideen, A.M.U., Barathiraja, C., Antony, S.A.: Advanced science. Eng. Med. 7(8), 672 (2015)Google Scholar
  61. 61.
    Hema, E., Manikandan, A., Gayathri, M., Durka, M., Antony, S.A., Venkatraman, B.R.: J. Nanosci. Nanotechnol. 16(6), 5929 (2016)CrossRefGoogle Scholar
  62. 62.
    Tauc, J.: Mater. Res. Bull. 5(8), 721 (1970)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of PhysicsShahid Bahonar University of KermanKermanIran

Personalised recommendations