Role of Annealing Temperatures of Fe2CoSn Half-Metallic Heusler Alloy Nanoparticles for Spintronics Applications

  • V. Asvini
  • G. Saravanan
  • R. K. Kalaiezhily
  • K. RavichandranEmail author
Original Paper


Fe2CoSn Heusler alloy nanoparticles were synthesized using co-precipitation method. The prepared samples were annealed at various temperatures (700 °C, 750 °C, 800 °C, 850 °C, and 900 °C) in N2 atmosphere. The structural properties of Fe2CoSn Heusler alloy nanoparticles were analyzed using powder X-ray diffraction techniques. The structure of the Fe2CoSn Heusler alloy nanoparticles was found to be FCC superlattice of L21 disorder structure. The grain size of Fe2CoSn Heusler alloy nanoparticles was found to be 4.82 nm for 800 °C annealed samples and it gets increased for high annealing temperatures. Dislocation density was calculated to be 4.304 × 1016 m−2 for 800 °C annealed samples with low coercivity, low exchange bias, high susceptibility, and high saturation values.


Heusler alloy Half-metallic ferromagnets Dislocation density 



The author thanks the Department of Science and Technology (DST) India, for offering the award of Research Fellowship under DST-PURSE Phase-II program.


  1. 1.
    Wu, L., Wu, Y., Wei, H., Shi, Y., Hu, C.: Mater. Lett. 58, 2700 (2004)CrossRefGoogle Scholar
  2. 2.
    Rahman, I.A., Padavettan, V.: J. Nanomater. 2012(2012), 132424Google Scholar
  3. 3.
    Jiang, Q., Lang, X.Y.: Open Nanosci. J. 1, 32 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    Nelson, J.A., Bennett, L.H., Wagner, M.J.: J. Am. Chem. Soc. 124, 2979 (2002)CrossRefGoogle Scholar
  5. 5.
    Zhang, Z.D.: In: Nalwa, H.S. (ed.) Encylopedia of nanoscience and nanotechnology, vol. 6, pp. 77–160. America Scientific Publishers (2004)Google Scholar
  6. 6.
    Sun, S., Murray, C.B., Weller, D., Folks, L., Moser, A.: J. Dermatol. Sci. 287, 1989–1992 (2000)Google Scholar
  7. 7.
    Sun, S.: Adv.Mater. 18, 393–403 (2006)CrossRefGoogle Scholar
  8. 8.
    Jun, Y.W., Lee, J.H., Cheon, J.: Angew. Chem. Int. Ed. 47, 5122–5135 (2008)CrossRefGoogle Scholar
  9. 9.
    Groot, R.A.D., Muller, F.M., Engen, P.G.V., Buschow, K.H.J.: Phys. Rev. Lett. 50, 2024 (1983)ADSCrossRefGoogle Scholar
  10. 10.
    Heusler, F.: Verh. Dtsch. Phys. Ges. 12, 219 (1903)Google Scholar
  11. 11.
    Zhu, W., Liu, E.K., Zhang, C.Z., Qin, Y.B., Luo, H.Z., Wang, W.H., Du, Z.W., Li, J.Q., Wu, G.H.: Acta Phys. Sin. 61, 027502 (2011)Google Scholar
  12. 12.
    Ayuela, J., Enkovaara, K.U., Nieminen, R.M.: J. Phys. Condens. Matter. 11, 2017 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    Gasi, T., Nayak, A.K., Nicklas, M., Felser, C.: J. Appl. Phys. 113, 17E301 (2013)CrossRefGoogle Scholar
  14. 14.
    Zhang, M., Brück, E., de Boer, F.R., Wu, G.: J. Magn. Magn. Mater. 283, 409 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    Gao, S., Liu, Y., Kou, X.: Int. J. Electrochem. Sci. 10, 8727–8737 (2015)Google Scholar
  16. 16.
    V. Asvini, G. Saravanan, R.K. Kalaiezhily, K. Ravichandran, AIP Conference Proceedings 1953, (2018), 120037Google Scholar
  17. 17.
    Du, J.H., Zuo, Y.L., Wang, Z., Ma, J.H., Xi, L.: J.Mater.Sci.Technol. 29, 245–248 (2013)CrossRefGoogle Scholar
  18. 18.
    Cullity, B.D.: Elements of X-Ray Diffraction, 2nd edn. Addison-Wesley, Ontario (1977)Google Scholar
  19. 19.
    Shindo, D., Hiraga, K.: High Resolution Electron Microscopy for Materials Science. Springer, Tokyo (1998)CrossRefGoogle Scholar
  20. 20.
    Foner, S.: J. Appl. Phys. 79, 4740 (1996)ADSCrossRefGoogle Scholar
  21. 21.
    Mote, V.D., Purushotham, Y., Dole, B.N.: J. Theor. Appl. Phys. 6, 6 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    Bindu, P., Thomas, S.: J. Theor. Appl. Phys. 8, 123 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    Arrott, A.: Phys. Rev. 108, 6 (1957)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Nuclear PhysicsUniversity of MadrasChennaiIndia

Personalised recommendations