Evaluation of Magnetic-Mechanical Coupling Behavior of Multiphase Magnetostrictive Materials
- 14 Downloads
Abstract
An online control by the magnetic method is considered as a nondestructive evaluation approach to detect the variation of the microstructure. The magnetic model used for each phase is based on a magneto-mechanical coupling model, which is characterized, on the one hand, by the influence of applied field on the magnetic susceptibility and magnetostriction; on the other hand, it is characterized by the effect of mechanical stress on magnetization of a material. In order to predict the macroscopic behavior correctly, this model takes not only account for the multiphased state of dual-phase steels for each phase separately but also for the heterogeneity of stress and magnetic field through a self-consistent localization-homogenization scheme. The proposed multiscale approach is based on the hypothesis of domain energy balance, including the localization step, the local constitutive law application, evaluation of the volumetric fraction of martensite, and the homogenization step. Results are discussed and compared with experimental data from the literature.
Keywords
Magnetostrictive materials Dual-phase steel Magneto-mechanical coupling Multiscale methodNotes
Funding Information
The presented work was supported by the Fundamental Research Funds for the Central Universities (lzujbky-2019-22) and the Overseas Personnel Science and Technology Activities Project Merit Funding ((2016) 176).
References
- 1.Apicella, V., Clemente, C.S., Davinon, D., et al.: Magneto-mechanical optimization and analysis of a magnetostrictive cantilever beam for energy harvesting [J]. J. Magn. Magn. Mater. 475, 401–407 (2019)ADSCrossRefGoogle Scholar
- 2.Zhang, Y.P.: FeGa alloy: magnetostriction material with great potential [J]. J. Magn. Mater. Dev. 49(4), 55–59 (2018)ADSCrossRefGoogle Scholar
- 3.Elhajjar, R., Law, C.T., Pegoretti, A.: Magnetostrictive polymer composites: recent advances in materials, structures and properties [J]. Prog. Mater. Sci. 97, 204–229 (2018)CrossRefGoogle Scholar
- 4.Ausanio, G., Iannotti, V., Ricciardi, E., et al.: Magneto-piezoresistance in magnetorheological elastomers for magnetic induction gradient or position sensors[J]. Sens. Actuators A: Phys. 205, 235–239 (2014)CrossRefGoogle Scholar
- 5.Wen, S.L., Wang, D.L.: Current research progress on novel FeGa alloy magnetostrictive materials [J]. J Magn Mater Dev. 48(4), 57–62 (2017)Google Scholar
- 6.Liu, H., Lv, Z.: Uncertain material properties on wave dispersion behaviors of smart magneto-electro-elastic nanobeams [J]. Compos. Struct. 202, 615–624 (2018)CrossRefGoogle Scholar
- 7.Gao, W.X., Brennan, R., Hu, Y., et al.: Energy transduction ferroic materials [J]. Mater. Today. 21, 771–784 (2018)CrossRefGoogle Scholar
- 8.Liang, Y.R., Zheng, X.J.: Experimental research on magneto-thermo-mechanical dynamic performance of Terfenol-D [J]. J Lanzhou Univ (Natural Science Edition). 46(6), 112–118 (2010)Google Scholar
- 9.Wang, X.J., Huang, Y., Cai, T.: Homogenization of macroscopic magneto-elastic behavior based on a microscopic model[J]. J. Supercond. Nov. Magn. 26(8), 2791–2794 (2013)CrossRefGoogle Scholar
- 10.Wang, X.J., Hubert, O., He, S., et al.: Reversible magneto-mechanical modeling of heterogeneous media[J]. J. Supercond. Nov. Magn. 27, 2049–2058 (2014)CrossRefGoogle Scholar
- 11.Engdahl, G., Svensson, L.: Simulation of the magnetostrictive performance of terfenol-D in mechanical devices [J]. J. Appl. Phys. 63(8), 3924–3926 (1988)ADSCrossRefGoogle Scholar
- 12.Delince, F., Genon, A., Gillard, J.M.: Numerical computation of the magnetostrictive effect in ferromagnetic materials [J]. J. Appl. Phys. 69(72), 5794–5710 (1991)ADSCrossRefGoogle Scholar
- 13.Karim, A., Mondher, B.: 3D FEM of magnetostriction phenomena using coupled constitutive laws [J]. Int. J. Appl. Electromagn. Mech. 19(39), 367–371 (2004)Google Scholar
- 14.Cstrman, G.P., Mitrovic, M.: Nonlinear constitutive relations for magnetostrictive materials with applications to 1-D problems[J]. J. Intell. Mater. Syst. Struct. 6, 673–683 (1996)Google Scholar
- 15.Jiles, D.C., Atherton, D.L.: Theory of ferromagnetic hysteresis (invited) [J]. J. Appl. Phys. 55(6), 2115–2120 (1984)ADSCrossRefGoogle Scholar
- 16.Jiles, D.C., Atherton, D.L.: Theory of ferromagnetic hysteresis[J]. J. Magn. Magn. Mater. 61(1), 48–60 (1986)ADSCrossRefGoogle Scholar
- 17.Sablik, M.J., Burkhardt, G.L., Kwun, H., et al.: A model for the effect of stress on the low-frequency harmonic content of the magnetic induction in ferromagnetic materials [J]. J. Appl. Phys. 63(8), 3930–3932 (1988)ADSCrossRefGoogle Scholar
- 18.Sablik, M.J., Jiles, D.C.: Coupled magnetoelastic theory of magnetic and magnetostrictive hysteresis [J]. IEEE Trans. Magn. 29(30), 2113–2123 (1993)ADSCrossRefGoogle Scholar
- 19.Jiles, D.C.: Theory of the magnetomechanical effect [J]. J. Phys. D. Appl. Phys. 28, 1537–1546 (1995)ADSCrossRefGoogle Scholar
- 20.Dapino M J. Nonlinear and hysteretic magnetomechanical model for magnetostrictive transducers [D]. Ames: Iowa State University, 1999Google Scholar
- 21.Dapino, M.J., Smith, R.C., Faidley, L.E., et al.: A coupled structural-magnetic strain and stress model for magnetostrictive transducers [J]. J. Intell. Mater. Syst. Struct. 11(4), 135–152 (2000)CrossRefGoogle Scholar
- 22.Zheng, X.J., Liu, X.E.: A nonlinear constitutive model for Terfenol-D rods [J]. J. Appl. Phys. 97, 053901-1-6 (2005)ADSGoogle Scholar
- 23.Zheng, X.J., Sun, L.: A nonlinear constitutive model of magnetothermo-mechanical coupling for giant magnetostrictive materials [J]. J. Appl. Phys. 100(6), 063906-1-6 (2006)ADSCrossRefGoogle Scholar
- 24.Sun L. Constitutive theory of giant magnetostrictive materials[D]. Lanzhou: Lanzhou Univercity, 2007Google Scholar
- 25.Zhou H M, Zhou Y H, Zheng X J, et al. A general 3-D nonlinear magnetostrictive constitutive model for soft ferromagnetic materials[J]. J. Magn. Magn. Mater., 2009, 321(4): 281–290ADSCrossRefGoogle Scholar
- 26.Jin, K.: Theoretical research on multi-field coupling nonlinear mechanics behavior of giant magnetostrictive materials[J]. Journal of Solid Mechanics. 33(5), 548–556 (2012)ADSGoogle Scholar
- 27.Wang, L., Wang, B.W., Wang, Z.H., et al.: Magneto-thermo mechanical characterization of giant magnetostrictive materials[J]. Rare Metals. 32(5), 486–489 (2013)CrossRefGoogle Scholar
- 28.Daniel L, Hubert O, An analytical model for the delta effect in magnetic materials[J]. EPJ Applied Physics Journal, 2009, 45 (3): 3101–3111Google Scholar
- 29.Daniel, L., Hubert, O., Buiron, N., et al.: Reversible magneto-elastic behavior: a multiscale approach[J]. J. Mech. Phys.Solids. 56(3), 1018–1042 (2008)ADSMathSciNetzbMATHCrossRefGoogle Scholar
- 30.Buiron N, Hirsinger L, Billardon R. A multiscale model for magneto-elastic couplings[J] J. Phys. IV, 1999, 9: 187–196Google Scholar
- 31.Buiron, N., Hirsinger, L., Billardon, R.: Influence of the texture of soft magnetic materials on their magneto-elastic behaviour[J]. J. Phys. IV. 11, 373–380 (2001)Google Scholar
- 32.Néel, L.: Les lois de l’aimantation et de la subdivision en domaines élémentaires d’un monocristal de fer[J]. J. Phys. Radium. 5(11), 241–251 (1944)CrossRefGoogle Scholar
- 33.Chikazumi, S.: Physics of Ferromagnetism. Clarendon Press, Oxford (1997)Google Scholar
- 34.Wang, X.J., Huang, Y.: Evaluation of Martensite faction volume in DP steels: energetical and multiscale methods[J]. J Magn Mater Devices. 45(01), 18–21 (2014)ADSGoogle Scholar
- 35.Kuruzar, M.E., Cullity, B.D.: The magnetostriction of iron under tensile and compressive stress[J]. Int J Magn. 1(4), 323–325 (1971)Google Scholar