Advertisement

Evaluation of Magnetic-Mechanical Coupling Behavior of Multiphase Magnetostrictive Materials

  • Xingjun Wang
  • Ying HuangEmail author
  • Thomas M. Michelitsch
Original Paper
  • 14 Downloads

Abstract

An online control by the magnetic method is considered as a nondestructive evaluation approach to detect the variation of the microstructure. The magnetic model used for each phase is based on a magneto-mechanical coupling model, which is characterized, on the one hand, by the influence of applied field on the magnetic susceptibility and magnetostriction; on the other hand, it is characterized by the effect of mechanical stress on magnetization of a material. In order to predict the macroscopic behavior correctly, this model takes not only account for the multiphased state of dual-phase steels for each phase separately but also for the heterogeneity of stress and magnetic field through a self-consistent localization-homogenization scheme. The proposed multiscale approach is based on the hypothesis of domain energy balance, including the localization step, the local constitutive law application, evaluation of the volumetric fraction of martensite, and the homogenization step. Results are discussed and compared with experimental data from the literature.

Keywords

Magnetostrictive materials Dual-phase steel Magneto-mechanical coupling Multiscale method 

Notes

Funding Information

The presented work was supported by the Fundamental Research Funds for the Central Universities (lzujbky-2019-22) and the Overseas Personnel Science and Technology Activities Project Merit Funding ((2016) 176).

References

  1. 1.
    Apicella, V., Clemente, C.S., Davinon, D., et al.: Magneto-mechanical optimization and analysis of a magnetostrictive cantilever beam for energy harvesting [J]. J. Magn. Magn. Mater. 475, 401–407 (2019)ADSCrossRefGoogle Scholar
  2. 2.
    Zhang, Y.P.: FeGa alloy: magnetostriction material with great potential [J]. J. Magn. Mater. Dev. 49(4), 55–59 (2018)ADSCrossRefGoogle Scholar
  3. 3.
    Elhajjar, R., Law, C.T., Pegoretti, A.: Magnetostrictive polymer composites: recent advances in materials, structures and properties [J]. Prog. Mater. Sci. 97, 204–229 (2018)CrossRefGoogle Scholar
  4. 4.
    Ausanio, G., Iannotti, V., Ricciardi, E., et al.: Magneto-piezoresistance in magnetorheological elastomers for magnetic induction gradient or position sensors[J]. Sens. Actuators A: Phys. 205, 235–239 (2014)CrossRefGoogle Scholar
  5. 5.
    Wen, S.L., Wang, D.L.: Current research progress on novel FeGa alloy magnetostrictive materials [J]. J Magn Mater Dev. 48(4), 57–62 (2017)Google Scholar
  6. 6.
    Liu, H., Lv, Z.: Uncertain material properties on wave dispersion behaviors of smart magneto-electro-elastic nanobeams [J]. Compos. Struct. 202, 615–624 (2018)CrossRefGoogle Scholar
  7. 7.
    Gao, W.X., Brennan, R., Hu, Y., et al.: Energy transduction ferroic materials [J]. Mater. Today. 21, 771–784 (2018)CrossRefGoogle Scholar
  8. 8.
    Liang, Y.R., Zheng, X.J.: Experimental research on magneto-thermo-mechanical dynamic performance of Terfenol-D [J]. J Lanzhou Univ (Natural Science Edition). 46(6), 112–118 (2010)Google Scholar
  9. 9.
    Wang, X.J., Huang, Y., Cai, T.: Homogenization of macroscopic magneto-elastic behavior based on a microscopic model[J]. J. Supercond. Nov. Magn. 26(8), 2791–2794 (2013)CrossRefGoogle Scholar
  10. 10.
    Wang, X.J., Hubert, O., He, S., et al.: Reversible magneto-mechanical modeling of heterogeneous media[J]. J. Supercond. Nov. Magn. 27, 2049–2058 (2014)CrossRefGoogle Scholar
  11. 11.
    Engdahl, G., Svensson, L.: Simulation of the magnetostrictive performance of terfenol-D in mechanical devices [J]. J. Appl. Phys. 63(8), 3924–3926 (1988)ADSCrossRefGoogle Scholar
  12. 12.
    Delince, F., Genon, A., Gillard, J.M.: Numerical computation of the magnetostrictive effect in ferromagnetic materials [J]. J. Appl. Phys. 69(72), 5794–5710 (1991)ADSCrossRefGoogle Scholar
  13. 13.
    Karim, A., Mondher, B.: 3D FEM of magnetostriction phenomena using coupled constitutive laws [J]. Int. J. Appl. Electromagn. Mech. 19(39), 367–371 (2004)Google Scholar
  14. 14.
    Cstrman, G.P., Mitrovic, M.: Nonlinear constitutive relations for magnetostrictive materials with applications to 1-D problems[J]. J. Intell. Mater. Syst. Struct. 6, 673–683 (1996)Google Scholar
  15. 15.
    Jiles, D.C., Atherton, D.L.: Theory of ferromagnetic hysteresis (invited) [J]. J. Appl. Phys. 55(6), 2115–2120 (1984)ADSCrossRefGoogle Scholar
  16. 16.
    Jiles, D.C., Atherton, D.L.: Theory of ferromagnetic hysteresis[J]. J. Magn. Magn. Mater. 61(1), 48–60 (1986)ADSCrossRefGoogle Scholar
  17. 17.
    Sablik, M.J., Burkhardt, G.L., Kwun, H., et al.: A model for the effect of stress on the low-frequency harmonic content of the magnetic induction in ferromagnetic materials [J]. J. Appl. Phys. 63(8), 3930–3932 (1988)ADSCrossRefGoogle Scholar
  18. 18.
    Sablik, M.J., Jiles, D.C.: Coupled magnetoelastic theory of magnetic and magnetostrictive hysteresis [J]. IEEE Trans. Magn. 29(30), 2113–2123 (1993)ADSCrossRefGoogle Scholar
  19. 19.
    Jiles, D.C.: Theory of the magnetomechanical effect [J]. J. Phys. D. Appl. Phys. 28, 1537–1546 (1995)ADSCrossRefGoogle Scholar
  20. 20.
    Dapino M J. Nonlinear and hysteretic magnetomechanical model for magnetostrictive transducers [D]. Ames: Iowa State University, 1999Google Scholar
  21. 21.
    Dapino, M.J., Smith, R.C., Faidley, L.E., et al.: A coupled structural-magnetic strain and stress model for magnetostrictive transducers [J]. J. Intell. Mater. Syst. Struct. 11(4), 135–152 (2000)CrossRefGoogle Scholar
  22. 22.
    Zheng, X.J., Liu, X.E.: A nonlinear constitutive model for Terfenol-D rods [J]. J. Appl. Phys. 97, 053901-1-6 (2005)ADSGoogle Scholar
  23. 23.
    Zheng, X.J., Sun, L.: A nonlinear constitutive model of magnetothermo-mechanical coupling for giant magnetostrictive materials [J]. J. Appl. Phys. 100(6), 063906-1-6 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    Sun L. Constitutive theory of giant magnetostrictive materials[D]. Lanzhou: Lanzhou Univercity, 2007Google Scholar
  25. 25.
    Zhou H M, Zhou Y H, Zheng X J, et al. A general 3-D nonlinear magnetostrictive constitutive model for soft ferromagnetic materials[J]. J. Magn. Magn. Mater., 2009, 321(4): 281–290ADSCrossRefGoogle Scholar
  26. 26.
    Jin, K.: Theoretical research on multi-field coupling nonlinear mechanics behavior of giant magnetostrictive materials[J]. Journal of Solid Mechanics. 33(5), 548–556 (2012)ADSGoogle Scholar
  27. 27.
    Wang, L., Wang, B.W., Wang, Z.H., et al.: Magneto-thermo mechanical characterization of giant magnetostrictive materials[J]. Rare Metals. 32(5), 486–489 (2013)CrossRefGoogle Scholar
  28. 28.
    Daniel L, Hubert O, An analytical model for the delta effect in magnetic materials[J]. EPJ Applied Physics Journal, 2009, 45 (3): 3101–3111Google Scholar
  29. 29.
    Daniel, L., Hubert, O., Buiron, N., et al.: Reversible magneto-elastic behavior: a multiscale approach[J]. J. Mech. Phys.Solids. 56(3), 1018–1042 (2008)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Buiron N, Hirsinger L, Billardon R. A multiscale model for magneto-elastic couplings[J] J. Phys. IV, 1999, 9: 187–196Google Scholar
  31. 31.
    Buiron, N., Hirsinger, L., Billardon, R.: Influence of the texture of soft magnetic materials on their magneto-elastic behaviour[J]. J. Phys. IV. 11, 373–380 (2001)Google Scholar
  32. 32.
    Néel, L.: Les lois de l’aimantation et de la subdivision en domaines élémentaires d’un monocristal de fer[J]. J. Phys. Radium. 5(11), 241–251 (1944)CrossRefGoogle Scholar
  33. 33.
    Chikazumi, S.: Physics of Ferromagnetism. Clarendon Press, Oxford (1997)Google Scholar
  34. 34.
    Wang, X.J., Huang, Y.: Evaluation of Martensite faction volume in DP steels: energetical and multiscale methods[J]. J Magn Mater Devices. 45(01), 18–21 (2014)ADSGoogle Scholar
  35. 35.
    Kuruzar, M.E., Cullity, B.D.: The magnetostriction of iron under tensile and compressive stress[J]. Int J Magn. 1(4), 323–325 (1971)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Xingjun Wang
    • 1
    • 2
  • Ying Huang
    • 3
    • 4
    Email author
  • Thomas M. Michelitsch
    • 4
  1. 1.Key Laboratory of Modern Power System Simulation and Control & Renewable Energy TechnologyMinistry of Education(Northeast Electric Power University)JilinChina
  2. 2.Key Laboratory of Mechanics on Disaster and Environment in Western China, the College of Civil Engineering and MechanicsLanzhou UniversityLanzhouChina
  3. 3.School of Aviation EngineeringTaizhou UniversityTaizhouChina
  4. 4.Institut Jean le Rond d’AlembertSorbonne Universités, Université Pierre et Marie Curie, Paris 6Paris Cedex 05France

Personalised recommendations