Advertisement

Superconducting Materials: the Whole Story

Dedicated to Ted Geballe on his 100th birthday
  • J. E. HirschEmail author
Original Paper
  • 45 Downloads

Abstract

Ted Geballe has contributed enormously to the knowledge of superconducting materials during an illustrious scientific career spanning seven decades, encompassing groundbreaking discoveries and studies of both so-called conventional and unconventional superconductors. On the year of his 100th birthday, I would like to argue that all superconducting materials that Ted investigated, as well as those he did not, have one thing in common that is not generally recognized: hole carriers. This includes PbTe doped with Tl, for which Ted has proposed that superconductivity is driven by negative-U pairing. I will discuss why hole carriers are necessary for a material to be a superconductor, and the implications of this for the understanding of the fundamental physics of superconductivity.

Keywords

Holes Meissner effect 

Notes

References

  1. 1.
    Matthias, B.T., Geballe, T.H., Geller, S., Corenzwit, E.: Superconductivity of N b 3 S n. Phys. Rev. 95, 1435 (1954)ADSCrossRefGoogle Scholar
  2. 2.
    Geballe, T.H., Hull, G.W.: Seebeck Effect in Germanium. Phys. Rev. 94, 1134 (1954)ADSCrossRefGoogle Scholar
  3. 3.
    Geballe, T.H.: The Seebeck Effect in Germanium. Phys. Rev. 92, 857 (1953)ADSCrossRefGoogle Scholar
  4. 4.
    Geballe, T.H., Hull, G.W.: Seebeck Effect in Single Crystal Silicon. Phys. Rev. 96, 846 (1954)Google Scholar
  5. 5.
    Geballe, T.H., Hull, G.W.: Seebeck Effect in Silicon. Phys. Rev. 98, 940 (1955)ADSCrossRefGoogle Scholar
  6. 6.
    Morin, F.J., Geballe, T.H.: Electrical Conductivity and Seebeck Effect in N i 0.80,F e 2.20 O 4. Phys. Rev. 99, 467 (1955)ADSCrossRefGoogle Scholar
  7. 7.
    Hrostowski, H.J., Morin, F.J., Geballe, T.H., Wheatley, G.H.: Hall Effect and Conductivity of InSb. Phys. Rev. 99, 626 (1955)Google Scholar
  8. 8.
    Hrostowski, H.J., Morin, F.J., Geballe, T.H., Wheatley, G.H.: Hall Effect and Conductivity of InSb. Phys. Rev. 100, 1672 (1955)ADSCrossRefGoogle Scholar
  9. 9.
    Woodard, D.W., Cody, G.D.: Anomalous Resistivity of N b 3 S n. Phys. Rev. 136, A166 (1964)ADSCrossRefGoogle Scholar
  10. 10.
    Cornelius, C.A., et al.: Hall coefficients for A15 compounds: Nb-Sn and V-Si. Sol. St. Comm. 28, 793 (1978)ADSCrossRefGoogle Scholar
  11. 11.
    Hoffmann, L, Singh, A.K., Takei, H., Toyota, N.: Fermi surfaces in N b 3 S n through positron annihilation. J. Phys. F 18: Met. Phys. 18, 2605 (1988)CrossRefGoogle Scholar
  12. 12.
    Stewart, G.R.: Superconductivity in the A15 structure. Phys. C 514, 28 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    Uchida, S., et al.: Transport Properties of (L a 1−x A x)2 C u04. JJAP 26, L440 (1987)Google Scholar
  14. 14.
    Uchida, S., et al.: Superconducting Properties of (L a 1−x S r x)2 C u O 4. JJAP 26, L443 (1987)Google Scholar
  15. 15.
    Uchida, S., et al.: Electric and Magnetic Properties of L a 2 C u O 4. JJAP 26, L445 (1987)ADSGoogle Scholar
  16. 16.
    Emery, V.J.: Theory of high-Tc superconductivity in oxides. Phys. Rev. Lett. 58, 2794 (1987)ADSCrossRefGoogle Scholar
  17. 17.
    Shafer, M.W., Penney, T., Olson, B.L.: Correlation of Tc with hole concentration in L a 2−x S r x C u O 4−δ superconductors. Phys. Rev. B 36, 4047 (1987)ADSCrossRefGoogle Scholar
  18. 18.
    Bednorz, J.G., Müller, K.A.: A Road towards High Tc Superconductivity. JJAP 26(Suppl. 26-3), 1781 (1987). see also Rev. Mod. Phys. 60, 585 (1988)ADSGoogle Scholar
  19. 19.
    Bednorz, J.G., Müller, K. A.: Possible high T c superconductivity in the Ba-La-Cu-O system. Zeitschrift für Physik B 64, 189–193 (1986)ADSCrossRefGoogle Scholar
  20. 20.
    Geballe, T.H., Matthias, B.T., Hull, G. W. Jr. , Corenzwit, E.: Absence of an Isotope Effect in Superconducting Ruthenium. Phys. Rev. Lett. 6, 275 (1961)ADSCrossRefGoogle Scholar
  21. 21.
    Geballe, T.H.: . Phys. C 514, 437 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    Fowler, R.D., Lindsay, J.D.G., White, R.W., Hill, H.H., Matthias, B.T.: . Phys. Rev. Lett. 19, 892 (1967)ADSCrossRefGoogle Scholar
  23. 23.
    Stritzker, B., Buckel, W.: . Zeitschrift für Physik A 257, 1 (1972)ADSCrossRefGoogle Scholar
  24. 24.
    Physica C Special Issue: Superconducting Materials: Conventional, Unconventional and Undetermined. Dedicated to Theodore H. Geballe on the year of his 95th birthday. In: Hirsch, J.E., Maple, M.B., Marsiglio, F. (eds.) , vol. 514, pp 1–444 (2015)Google Scholar
  25. 25.
    Geballe, T.H., Hammond, R.H., Phillip, M. Wu.: What T c tells. Phys. C 514, 9 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    Matsushita, Y., Wianecki, P.A., Sommer, A.T., Geballe, T.H., Fisher, I.R.: . Phys. Rev. B 74, 134512 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    Erickson, A.S., Chu, J. -H., Toney, M.F., Geballe, T.H., Fisher, I.R.: Enhanced superconducting pairing interaction in indium-doped tin telluride. Phys. Rev. B 79, 024520 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    Bustarret, E.: Superconductivity in doped semiconductors. Phys. C 514, 36 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    Geballe, T.H., Moyzhes, B.Y.: Qualitative understanding of the highest Tc cuprates. Phys. C 341–348, 1821 (2000)ADSCrossRefGoogle Scholar
  30. 30.
    Geballe, T.H., Matthias, B.T., Corenzwit, E., Hull, G. W. Jr: Superconductivity in Molybdenum. Phys. Rev. Lett. 8, 313 (1962)ADSCrossRefGoogle Scholar
  31. 31.
    Hein, R.A., Gibson, J.W., Matthias, B.T., Geballe, T.H., Corenzwit, E.: . Phys. Rev. Lett. 8, 408 (1962)ADSCrossRefGoogle Scholar
  32. 32.
    Matthias, B.T., Geballe, T.H., Willens, R.H., Corenzwit, E., Hull, G. W. Jr: Superconductivity of N b 3 G e. Phys. Rev. 139, A1501 (1965)ADSCrossRefGoogle Scholar
  33. 33.
    Hannay, N.B., Geballe, T.H., Matthias, B.T., Andres, K., Schmidt, P., MacNair, D.: Superconductivity in Graphitic CompoundsGoogle Scholar
  34. 34.
    McDonald, T.R.R., Gregory, E., Barberich, G.S., McWhan, D.B., Geballe, T.H., Hull, G. W. Jr: Superconductivity of antimony. Phys Lett. 14, 16 (1965)ADSCrossRefGoogle Scholar
  35. 35.
    Sweedler, A.R., Hulm, J.K., Matthias, B.T., Geballe, T.H.: Superconductivity of barium tungsten bronze. Phys. Lett. 19, 82 (1965)ADSCrossRefGoogle Scholar
  36. 36.
    Di Salvo, F.J., Schwall, R., Geballe, T.H., Gamble, F.R., Osiecki, J.H.: Superconductivity in Layered Compounds with Variable Interlayer Spacings. Phys. Rev. Lett. 27, 310 (1971)ADSCrossRefGoogle Scholar
  37. 37.
    Tarascon, J.M., Greene, L.H., McKinnon, W.R., Hull, G.W., Geballe, T.H.: Superconductivity at 40 K in the Oxygen-Defect Perovskites L a 2−x S r x C u O 4−y. Science 235, 1373 (1987)ADSCrossRefGoogle Scholar
  38. 38.
    Geballe, T.H., Moyzhes, B.Y.: Model for superconductivity in optimally doped electron cuprates. Low Temp. Phys. 27, 777 (2001)ADSCrossRefGoogle Scholar
  39. 39.
    Tokura, Y., Takagi, H., Uchida, S.: A superconducting copper oxide compound with electrons as the charge carriers. Nature (London) 377, 345 (1989)ADSCrossRefGoogle Scholar
  40. 40.
    Dagan, Y., Greene, R.L.: Hole superconductivity in the electron-doped superconductor P r 2−x C e x C u O 4. Phys. Rev. B 76, 024506 (2007)ADSCrossRefGoogle Scholar
  41. 41.
    Li, Yangmu, Tabis, W., Tang, Y., Yu, G., Jaroszynski, J., Barisic, N., Greven, M.: Hole pocket-driven superconductivity and its universal features in the electron-doped cuprates. Science Advances 5, eaap7349 (2019)ADSCrossRefGoogle Scholar
  42. 42.
    Hirsch, J.E.: Hole superconductivity. Phys. Lett. A 134, 451 (1989)ADSCrossRefGoogle Scholar
  43. 43.
    See https://jorge.physics.ucsd.edu/hole.html for a list of references
  44. 44.
    Hirsch, J.E.: La superconductividad bien entendida empieza con H. Editorial Reverté, Barcelona, 1–264 (2019)Google Scholar
  45. 45.
    Chapnik, I.M.: On A Possible Criterion for Superconductivity. Sov. Phys. Dokl. 6, 988 (1962)ADSGoogle Scholar
  46. 46.
    Chapnik, I.M.: On the empirical correlation between the superconducting T c and the Hall coefficient. Phys. Lett. A 72 (1979)Google Scholar
  47. 47.
    Royall Cox, W., Hayes, D.J., Brotzen, F.R.: . Phys. Rev. B 7, 3580 (1973)ADSCrossRefGoogle Scholar
  48. 48.
    Pickett, W.E., Ho, K.M., Cohen, M.L.: Electronic properties of N b 3 G e and N b 3 A l from self-consistent pseudopotentials. I. Band structure and density of states. Phys. Rev. B 19, 1734 (1979)ADSCrossRefGoogle Scholar
  49. 49.
    Huntley, D.J., Frindt, R.F.: . Can. J. Phys. 52, 861–867 (1974)ADSCrossRefGoogle Scholar
  50. 50.
    Uchida, S., et al.: . Jpn. J. Appl. Phys. 26, L440 (1987)CrossRefGoogle Scholar
  51. 51.
    Pellegrin, E., Fink, J., Chen, C.T., Xiong, Q., Lin, Q.M., Chu, C.W.: . Phys. Rev. B 53, 2767 (1996)ADSCrossRefGoogle Scholar
  52. 52.
    Kang, W.N., et al.: Hole carrier in M g B 2 characterized by Hall measurements. Appl. Phys. Lett. 79, 982 (2001)ADSCrossRefGoogle Scholar
  53. 53.
    Riggs, Scott C, et al.: Doping dependent nonlinear Hall effect in S m F e A s O 1−x F x. J. Phys. Cond. Matt. 21, 412201 (2009)CrossRefGoogle Scholar
  54. 54.
    Caglieris, F., et al.: Quantum oscillations in the SmFeAsO parent compound and superconducting SmFeAs(O,F). Phys. Rev. B 96, 104508 (2017)ADSCrossRefGoogle Scholar
  55. 55.
    Hirsch, J. E.: Momentum of superconducting electrons and the explanation of the Meissner effect. Phys. Rev. B 95, 014503 (2017)ADSCrossRefGoogle Scholar
  56. 56.
    Pry, R.H., Lathrop, A.L., Houston, W.V.: Gyromagnetic Effect in a Superconductor. Phys. Rev. 86, 905 (1952)ADSCrossRefGoogle Scholar
  57. 57.
    Keesom, W.H., Kok, J.A.: . Physica 1, 503 (1934)ADSCrossRefGoogle Scholar
  58. 58.
    Keesom, W.H., Kok, J.A.: . Physica 1, 595 (1934)ADSCrossRefGoogle Scholar
  59. 59.
    Keesom, W.H., van Laer, P.H.: . Physica 4, 487 (1937)ADSCrossRefGoogle Scholar
  60. 60.
    Keesom, W.H., van Laer, P.H.: . Physica 5, 193 (1938)ADSCrossRefGoogle Scholar
  61. 61.
    van Laer, P.H., Keesom, W.H.: . Physica 5, 993 (1938)ADSCrossRefGoogle Scholar
  62. 62.
    Mapother, D.E.: . Phys. Rev. 126, 2021 (1962)ADSCrossRefGoogle Scholar
  63. 63.
    Shoenberg, D.: Superconductivity. Cambridge University Press, Cambridge (1962)zbMATHGoogle Scholar
  64. 64.
    Gorter, C.J., Casimir, H.: On supraconductivity I. Physica 1, 306 (1934)ADSzbMATHCrossRefGoogle Scholar
  65. 65.
    Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Theory of Superconductivity. Phys. Rev. 108, 1175 (1957)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  66. 66.
    Rutgers, A.J.: Note on supraconductivity. Physica 1, 1055 (1934), and references thereinADSzbMATHCrossRefGoogle Scholar
  67. 67.
    Hirsch, J.E.: Why only hole conductors can be superconductors. Proc. SPIE 10105, Oxide-based Materials and Devices VIII, 101051V (2017)Google Scholar
  68. 68.
    Anderson, P.W.: . Phys. Rev. 110, 827 (1958)ADSMathSciNetCrossRefGoogle Scholar
  69. 69.
    Rickayzen, G.: . Phys. Rev. 111, 817 (1958)ADSMathSciNetCrossRefGoogle Scholar
  70. 70.
    Rickayzen, G.: . Phys. Rev. Lett. 2, 90 (1959)ADSCrossRefGoogle Scholar
  71. 71.
    Rickayzen, G.: . Phys. Rev. 115, 795 (1959)ADSMathSciNetCrossRefGoogle Scholar
  72. 72.
    Wentzel, G.: . Phys. Rev. 111, 1488 (1958)ADSMathSciNetCrossRefGoogle Scholar
  73. 73.
    Wentzel, G.: . Phys. Rev. Lett. 2, 33 (1959)ADSCrossRefGoogle Scholar
  74. 74.
    Pines, D., Schrieffer, J.R.: . Phys. Rev. Lett. 1, 407 (1958)ADSCrossRefGoogle Scholar
  75. 75.
    May, R.M., Schafroth, M.R.: . Phys. Rev. 115, 1446 (1959)ADSCrossRefGoogle Scholar
  76. 76.
    Nambu, Y.: . Phys. Rev. 117, 648 (1960)ADSMathSciNetCrossRefGoogle Scholar
  77. 77.
    Kadanoff, L.P., Martin, P.C.: . Phys. Rev. 124, 670 (1961)ADSMathSciNetCrossRefGoogle Scholar
  78. 78.
    Uhlenbrock, D.A., Zumino, B.: . Phys. Rev. 133, A350 (1964)ADSCrossRefGoogle Scholar
  79. 79.
    Frahm, H., Ullah, S., Dorsey, A.T.: Flux Dynamics and the Growth of the Superconducting Phase. Phys. Rev. Lett. 66, 3067 (1991)ADSCrossRefGoogle Scholar
  80. 80.
    Dorsey, A.T.: Dynamics of interfaces in superconductors. Ann. of Phys. 233, 248 (1994)ADSzbMATHCrossRefGoogle Scholar
  81. 81.
    Liu, F., Mondello, M., Goldenfeld, N.: Kinetics of the Superconducting Transition. Phys. Rev. Lett. 66, 3071 (1991)ADSCrossRefGoogle Scholar
  82. 82.
    Schmid, A.: A Time Dependent Ginzburg-Landau Equation and its Application to the Problem of Resistivity in the Mixed State. Phys. Kondens. Mater. 5, 302 (1966)ADSGoogle Scholar
  83. 83.
    Abrahams, E., Tsuneto, T.: Time Variation of the Ginzburg-Landau Order Parameter. Phys. Rev. 152, 416 (1966)ADSCrossRefGoogle Scholar
  84. 84.
    Cyrot, M.: Ginzburg-Landau theory for superconductors. Rep. Prog. Phys. 36, 103 (1973)ADSCrossRefGoogle Scholar
  85. 85.
    Halperin, B.I., Refael, G., Demler, E.: Resistance in superconductors. Int. J. Mod. Phys. B 24, 4039 (2010), and references thereinADSzbMATHCrossRefGoogle Scholar
  86. 86.
    Hirsch, J.E.: On the dynamics of the Meissner effect. Phys. Scr. 91, 035801 (2016)ADSCrossRefGoogle Scholar
  87. 87.
    Hirsch, J.E.: The disappearing momentum of the supercurrent in the superconductor to normal phase transformation. Europhys. Lett. 114, 57001 (2016)ADSCrossRefGoogle Scholar
  88. 88.
    Hirsch, J.E.: On the reversibitity of the Meissner effect and the angular momentum puzzle. Ann. Phys. 373, 230 (2016)ADSCrossRefGoogle Scholar
  89. 89.
    Hirsch, J.E.: Entropy generation and momentum transfer in the superconductor to normal phase transformation and the consistency of the conventional theory of superconductivity. Int. J. Mod. Phys.B 32, 1850158 (2018)ADSMathSciNetCrossRefGoogle Scholar
  90. 90.
    Hirsch, J.E.: Alfven-like waves along normal-superconductor phase boundaries. Phys. C 564, 42 (2019)ADSCrossRefGoogle Scholar
  91. 91.
    Webb, G.W., Marsiglio, F., Hirsch, J.E.: Superconductivity in the elements, alloys and simple compounds. Phys. C 514, 17 (2015)ADSCrossRefGoogle Scholar
  92. 92.
    Hirsch, J.E., Marsiglio, F.: Superconducting state in an oxygen hole metal. Phys. Rev. B 39, 11515–11525 (1989)ADSCrossRefGoogle Scholar
  93. 93.
    Marsiglio, F., Hirsch, J.E.: Hole Superconductivity and the High-Tc Oxides. Phys. Rev. B41, 6435–6456 (1990)ADSCrossRefGoogle Scholar
  94. 94.
    Hirsch, J.E., Marsiglio, F.: Hole superconductivity in oxides: A two-band model. Phys. Rev. B 43, 424 (1991)ADSCrossRefGoogle Scholar
  95. 95.
    Hirsch, J.E.: Bond-charge repulsion and hole superconductivity. Physica C 158, 326 (1989)ADSCrossRefGoogle Scholar
  96. 96.
    Hirsch, J.E.: Coulomb attraction between Bloch electrons. Phys. Lett. A 138, 83 (1989)ADSCrossRefGoogle Scholar
  97. 97.
    Hirsch, J.E., Marsiglio, F.: Where is 99% of the condensation energy of T l 2 B a 2 C u O y coming from? Phys. C 331, 180 (2000)ADSCrossRefGoogle Scholar
  98. 98.
    Hirsch, J.E.: Hole superconductivity from kinetic energy gain. Phys. C 213, 341–348 (2000)Google Scholar
  99. 99.
    Marsiglio, F., Hirsch, J.E.: Tunneling asymmetry: A test of superconductivity mechanisms. Physica C 159, 157 (1989)ADSCrossRefGoogle Scholar
  100. 100.
    Hirsch, J.E., Marsiglio, F.: Optical sum rule violation, superfluid weight, and condensation energy in the cuprates. Phys. Rev B 62, 15131 (2000)ADSCrossRefGoogle Scholar
  101. 101.
    Hirsch, J.E., Marsiglio, F.: Understanding electron-doped cuprate superconductors as hole superconductors. Phys. C 564, 29 (2019)ADSCrossRefGoogle Scholar
  102. 102.
    Hirsch, J.E.: Materials and mechanisms of hole superconductivity. Physica C 472, 78 (2012), and references thereinADSCrossRefGoogle Scholar
  103. 103.
    Matthias, B.T.: Empirical relation between superconductivity and the number of valence electrons per atom. Phys. Rev. 97, 74 (1955)ADSCrossRefGoogle Scholar
  104. 104.
    Matthias, B.T.: \(T_{c}^{\prime }s-\) The high and low of it, in Science and Technology of Superconductivity. In: Gregory, W.D., Mathews, W.N., Edelsack, E.A. (eds.), vol. 1, pp. 263–288. Plenum, New York (1973), and references thereinGoogle Scholar
  105. 105.
    Hirsch, J.E.: BCS theory of superconductivity: it is time to question its validity. Phys. Scripta 80, 035702 (2009)ADSCrossRefGoogle Scholar
  106. 106.
    Matthias, B.T.: Criteria for superconducting transition temperatures. Physica 69, 54 (1973)ADSCrossRefGoogle Scholar
  107. 107.
    Geballe, T.H., et al.: High temperature SP-band superconductors. Physics Physique Fizika 2, 293 (1966)MathSciNetCrossRefGoogle Scholar
  108. 108.
    Smith, T.F., Finlayson, T.R.: Superconductivity and lattice instability. Contemp. Phys. 21, 265 (1980)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of California, San DiegoLa JollaUSA

Personalised recommendations