Effects of Minor Mn Replace of Al on Martensitic and Magnetic Transition in the Co38Ni34Al28-xMnx Alloys

  • J. J. Su
  • K. X. MoEmail author
  • L. ZhouEmail author
Original Paper


The Co–Ni–Al new ferromagnetic shape memory alloys (FSMAs) with Mn replacing of minor Al were casted by a cylindrical chilled copper way, then the origin ingots were cut into small specimens and annealed by a technology process of 1473 K × 12 h, followed by quenching into the ice water. The result shows that Mn addition plays a positive role in adjusting the microstructure of γ-phase, promoting the self-synergistic change of β-phase to γ-phase, increasing the magnetization saturation and the magneto-crystalline anisotropy constant (K). The best suitable Mn content approximately x = 1.5 is beneficial for adjusting both martensitic and magnetic transitions; further, the Co38Ni34Al26.5Mn1.5 alloy has the biggest χmax (magnetic susceptibility) value (0.46%) and the broadest magnetic transition scale (near the room temperature) with the biggest △T value reaches to 27 K, respectively. Therefore, the addition of Mn with a minor content is very effective in optimizing the Co–Ni–Al FSMAs for obtaining a good magnetic-field-induced strain, indicating a potential and prospect application.


Ferromagnetic shape memory alloys Martensitic Magnetic transition Magnetic susceptibility 


Funding Information

This work is supported by the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20124420110007), the Demonstration Dase Fund for Joint Training Graduate of Guangdong Province (No. 2013JDXM27), the National Natural Science Foundation of China (No. 51201038), and the National Natural Science Foundation of Guangdong (No. 2015A030313488).


  1. 1.
    Chernenko, V.A., Cesari, E., Kokorin, V.V., et al.: The development of new ferromagnetic shape memory alloys in Ni-Mn-Ga system[J]. Spripta Metallurgica et Materialia. 33(8), 1239–1244 (1995)CrossRefGoogle Scholar
  2. 2.
    Jakub, T., Peter, M., Markus, C.: Properties of as-deposited and heat-treated Ni-Mn-Ga magnetic shape memnry alloy processed by directed energy deposition[J]. J. Alloya Compounds. 752(5), 455–463 (2018)Google Scholar
  3. 3.
    Caputo, M.P., Solomon, C.V.: A facile method for producing porous parts with complex geometries from ferromagnetic Ni-Mn-Ga shape memory alloys[J]. Mater. Lett. 200(1), 87–89 (2017)CrossRefGoogle Scholar
  4. 4.
    Jen, S.U., Chiang, F.L., Cheng, W.C., et al.: Structural and magneto-mechanical properties of Fe-Ni-Ga alloys[J]. Mater. Today: Proceedings. 3(2), 340–344 (2016)Google Scholar
  5. 5.
    Agarwal, S., Mukhopadhyay, P.K.: Effect of Sn and Sb element on the magnetism and functional properties of Ni-Mn-Al ferromagnetic shape memory alloys[J]. J. Magn. Magn. Mater. 402(15), 161–165 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    Han, J.H., Han, T., Sohn, Y., et al.: Thermo-elastic strain analysis in crystallographic-texture-aligned Fe-Pd magnetic shape memory alloy[J]. Scr. Mater. 167(1), 56–60 (2019)CrossRefGoogle Scholar
  7. 7.
    Liang, D.F., Mallet, J.J., Zangari, G.: Phase transformation and magnetic hardening in electrodeposited, equiatomic Fe-Pt films[J]. Electrochim. Acta. 55(27), 8100–8104 (2010)CrossRefGoogle Scholar
  8. 8.
    Liu, J., Li, G.G.: Magnetic force microscopy observations of Co-Ni-Ga and Co-Ni-Al alloys with two-phase structures[J]. Scr. Mater. 55(9), 755–758 (2006)CrossRefGoogle Scholar
  9. 9.
    Cisse, C., Zaki, W., Zineb, T.B., et al.: A review of constitutive models and modeling techniques for shape memory alloys[J]. Int. J. Plast. 76(1), 244–284 (2016)CrossRefGoogle Scholar
  10. 10.
    Ju, J., Xie, F., Zhou, J., et al.: Microstructure and mechanical properties change by rare earth Dy in as-cast Co-Ni-Al ferromagnetic shape memory alloys[J]. Mater. Sci. Eng. A. 616(20), 196–200 (2014)CrossRefGoogle Scholar
  11. 11.
    Dar, R.D., Yan, H.X., Chen, Y., et al.: Grain boundary engineering of Co-Ni-Al, Cu-Zn-Al, and Cu-Al-Ni shape memory alloys by intergranular precipitation of a ductile solid solution sphase[J]. Scr. Mater. 115(1), 113–117 (2016)CrossRefGoogle Scholar
  12. 12.
    Eftifeeva, A., Panchenko, E., Chumlyakov, Y., et al.: Two-way shape memory effect in [001] B2-oriented Co-Ni-Al single crystals[J]. Mater. Today: Proceedings. 4(3), 4789–4796 (2017)Google Scholar
  13. 13.
    Liu, J., Zheng, H.X., Li, J.G., et al.: Effect of solidification rate on microstructure and crystal orientation of ferromagnetic shape memory alloys Co-Ni-Al. Mater. Sci. Eng. A. 438-440(25), 2016–1064 (2006)Google Scholar
  14. 14.
    Li, Z.B., Zou, N.F., Yang, B., et al.: Effect of compressive load on the martensitic transformation from austenite to 5M martensite in a polycrystalline Ni-Mn-Ga alloy studied by in-situ nentron diffraction[J]. J. Alloys Compd. 666(5), 1–9 (2016)Google Scholar
  15. 15.
    Kim, Y., Kim, E.J., Choi, K., et al.: Room-temperature magnetocaloric effect of Ni-Co-Mn-Al Heusler alloys[J]. J. Alloys Compd. 616(15), 66–70 (2014)CrossRefGoogle Scholar
  16. 16.
    Xuan, H.C., Chen, F.H., Han, P.D., et al.: Effect of Co addition on the martensitic transformation and magnetiocaloric effect of Ni-Mn-Al ferromagnetic shape memory alloys. Intermetallics. 47(1), 31–35 (2014)CrossRefGoogle Scholar
  17. 17.
    Lyange, M.V., Sokolovskiy, V.V., Taskaev, S.V., et al.: Effect of disorder on magnetic properties and martensitic transformation of Co-doped Ni-Mn-Al Heusler alloy[J]. Intermetallics. 102(2), 132–139 (2018)CrossRefGoogle Scholar
  18. 18.
    Zhang, S.B., Chen, X., Moumni, Z., et al.: Thermal effects on high-frequency magnetic-field-induced martensite reorientation in ferromagnetic shape memory alloys: an experimental and theoretical investigation[J]. Int. J. Plast. 108(1), 1–20 (2018)Google Scholar
  19. 19.
    Checa, A.P., Feuchtwanger, J., Barandiaran, J.M., et al.: Ni-Mn-Ga-(Co, Fe, Cu) high temperature ferromagnetic shape memory alloys: effect of Mn and Ga replacement by Cu[J]. Scr. Mater. 154(2), 131–133Google Scholar
  20. 20.
    Brzoza, A., Kowalczyk, M., Wierzbicka-Miernik, A., et al.: Microstructural anisotropy, phase composition and magnetic properties of as-cast and annealed Ni-Mn-Ga-Co-Cu melt-spun ribbons[J]. J. Alloys Compd. 776(5), 319–325 (2019)CrossRefGoogle Scholar
  21. 21.
    Yang, Z.P., Gao, Z.Y., Cai, W., et al.: Proton-irradiation-induced structural and magnetic property changes in Ni-Mn-Ga high-temperature shape memory films[J]. Mater. Sci. Eng. B. 223(1), 76–83 (2017)CrossRefGoogle Scholar
  22. 22.
    Arumugam, S., Devarajan, U., Esakki Muthu, S., et al.: Structural, transport, magnetic, magnetocaloric properties and critical analysis of Ni-Co-Mn-Ga Heusler alloys[J]. J. Alloys Compd. 645(5), 335–343 (2015m)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Guangdong Polytechnic CollegeGuangzhouChina
  2. 2.Peking University Shenzhen CollegeShenzhenChina

Personalised recommendations