Advertisement

The Quest for High Critical Current in Applied High-Temperature Superconductors

  • Andreas Glatz
  • Ivan A. Sadovskyy
  • Ulrich Welp
  • Wai-Kwong KwokEmail author
  • George W. Crabtree
Original Paper
  • 17 Downloads

Abstract

We present a perspective on a new critical-current-by-design paradigm to tailor and enhance the current-carrying capacity of applied superconductors. Critical-current-by-design is based on large-scale simulations of vortex matter pinning in high-temperature superconductors and has qualitative and quantitative predictive powers to elucidate vortex dynamics under realistic conditions and to propose vortex pinning defects that could enhance the critical current, particularly at high magnetic fields. The simulations are validated with controlled experiments and demonstrate a powerful tool for designing high-performance superconductors for targeted applications.

Keywords

Superconductivity Critical current High-temperature superconductor Time-dependent Ginzburg-Landau simulations Vortex matter 

Notes

Acknowledgements

We thank Oak Ridge LCF, supported by DOE under contract DE-AC05-00OR22725, Argonne LCF (DOE contract DE-AC02-06CH11357), and the computing facility at Northern Illinois University, were many of the simulations were carried out.

Funding Information

This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. The simulation results presented here are based on codes, which were developed within the Scientific Discovery through Advanced Computing (SciDAC) program OSCon funded by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Science, Division of Materials Science and Engineering.

References

  1. 1.
    Geballe, T.H., Hulm, J.K.: Superconductors in electric-power technology. Sci. Am. 234, 138 (November 1980)CrossRefGoogle Scholar
  2. 2.
    Kwok, W.K., Welp, U., Glatz, A., Koshelev, A.E., Kihlstrom, K.J., Crabtree, G.W.: Vortices in high-performance high-temperature superconductors. Rep. Prog. Phys. 79, 116501 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    Sadovskyy, I.A., Jia, Y., Leroux, M., Kwon, J., Hu, H.F., Fang, L., Chaparro, C., Zhu, S.F., Welp, U., Zuo, J.M., Zhang, Y.F., Nakasaki, Y., Selvamanickam, V., Crabtree, G.W., Koshelev, A.E., Glatz, A., Kwok, W.K.: Toward superconducting critical current by design. Adv. Mater. 28, 4593 (2016)CrossRefGoogle Scholar
  4. 4.
    Massee, F., Sprau, P.O., Wang, Y.L., Davis, J.C.S., Ghigo, G., Gu, G.D., Kwok, W.K.: Imaging atomic-scale effects of high-energy ion irradiation on superconductivity and vortex pinning in Fe(Se,Te). Sci. Adv. 1, e1500033 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    Reichhardt, C., Olson Reichhardt, C.J.: Depinning and nonequilibrium dynamic phases of particle assemblies driven over random and ordered substrates: a review. Rep. Prog. Phys. 80, 026501 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    Sadovskyy, I.A., Koshelev, A.E., Phillips, C.L., Karpeyev, D.A., Glatz, A.: Stable large-scale solver for Ginzburg-Landau equations for superconductors. J. Comp. Phys. 294, 639 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bou-Diab, M., Dodgson, M.J.W., Blatter, G.: Vortex collisions: crossing or recombination? Phys. Rev. Lett. 86, 5132 (2001)ADSCrossRefGoogle Scholar
  8. 8.
    Vlasko-Vlasov, V.K., Glatz, A., Koshelev, A., Welp, U., Kwok, W.: Anisotropic superconductors in tilted magnetic fields. Phys. Rev. B. 91, 224505 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    Glatz, A., Vlasko-Vlasov, V.K., Kwok, W.K., Crabtree, G.W.: Vortex cutting in superconductors. Phys. Rev. B. 94, 064505 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    Dimos, D., Chaudhari, P., Mannhart, J., Legoues, F.K.: Orientation dependance of grain-boundary critical currents in YBa2Cu3O7-d Bicrystals. Phys. Rev. Lett. 61, 219 (1988)ADSCrossRefGoogle Scholar
  11. 11.
    Dimos, D., Chaudhari, P., Mannhart, J.: Superconducting transport properties of grain boundaries in YBa2Cu3O7 bicrystals. Phys. Rev. B. 41, 4038–4049 (1990)ADSCrossRefGoogle Scholar
  12. 12.
    Hilgenkamp, H., Mannhart, J.: Grain boundaries in high-Tc superconductors. Rev. Mod. Phys. 74, 485–549 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    Senatore, C., Alessandrini, M., Lucarelli, A., Tediosi, R., Uglietti, D., Iwasa, Y.: Progresses and challenges in the development of high-field solenoidal magnets based on RE123 coated conductors. Supercond. Sci. Technol. 27, 103001 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    Malozemoff, A.P.: Second-generation high-temperature superconductor wires for the electric power grid. Annu. Rev. Mater. Res. 42, 373–397 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    Shiohara, Y., Taneda, T., Yoshizumi, M.: Overview of materials and power applications of coated conductors project. Jpn. J. Appl. Phys. 51, 010007 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    Obradors, X., Puig, T.: Coated conductors for power applications: materials challenges. Supercond. Sci. Technol. 27, 044003 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    Foltyn, S.R., Civale, L., Macmanus-Driscoll, J.L., Jia, Q.X., Maiorov, B., Wang, H., Maley, M.: Materials science challenges for high-temperature superconducting wire. Nat. Mater. 6, 631–642 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    Ziegler, J.F., Biersack, J.P., Ziegler, M.D., SRIM: The Stopping and Range of Ions in Matter, 15th edn. Lulu Press Co., Morrisville (2015)Google Scholar
  19. 19.
    Matsumoto, K., Mele, P.: Artificial pinning center technology to enhance vortex pinning in YBCO coated conductors. Supercond. Sci. Technol. 23, 014001 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    Obradors, X., Puig, T., Palau, A., Pomar, A., Sandiumenge, F., Mele, P., Matsumoto, K.: in “Comprehensive nanoscience and technology”, v. 3, pp. 303–349. Elsevier, Amsterdam (2011)Google Scholar
  21. 21.
    Yoshida, Y., Miura, S., Tsuchiya, Y., Ichino, Y., Awaji, S., Matsumoto, K., Ichinose, A.: Approaches in controllable generation of artificial pinning center in REBa2Cu3Oy-coated conductor for high-flux pinning. Supercond. Sci. Technol. 30, 104002 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    Rupich, M.W., Verebelyi, D.T., Zhang, W., Kodenkandath, T., Li, X.: Metalorganic deposition of YBCO films for second-generation high-temperature superconductor wires. MRS Bull. 29, 572–578 (2004)CrossRefGoogle Scholar
  23. 23.
    Gapud, A.A., Kumar, D., Viswanathan, S.K., Cantoni, C., Varela, M., Abiade, J., Pennycook, S.J., Christen, D.K.: Enhancement of flux pinning in YBa2Cu3O7-d thin films embedded with epitaxially grown Y2O3 nanostructures using a multi-layering process. Supercond. Sci. Technol. 18, 1502–1505 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    Haugan, T., Barnes, P.N., Wheeler, R., Meisenkothen, F., Sumption, M.: Addition of nanoparticle dispersions to enhance flux pinning of the YBa2Cu3O7-x superconductor. Nature. 430, 867–870 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    MacManus-Driscoll, J.L., Foltyn, S.R., Jia, Q.X., Wang, H., Serquis, A., Civale, L., Maiorov, B., Hawley, M.E., Maley, M.P., Peterson, D.E.: Strongly enhanced current densities in superconducting coated conductors of YBaCuO + BaZrO. Nat. Mater. 3, 439–443 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    Gutierrez, J., Llordes, A., Gazquez, J., Gibert, M., Roma, N., Ricart, S., Pomar, A., Sandiumenge, F., Mestres, N., Puig, T., Obradors, X.: Strong isotropic flux pinning in solution-derived YBa2Cu3O7-x nanocomposite superconductor films. Nat. Mater. 6, 367–373 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    Miura, M., Maiorov, B., Baily, S.A., Haberkorn, N., Willis, J.O., Marken, K., Izumi, T., Shiohara, Y., Civale, L.: Mixed pinning landscape in nanoparticle-introduced YGdBa2Cu3Oy films grown by metal organic deposition. Phys. Rev. B. 83, 184519 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    Kang, S., Goyal, A., Li, J., Gapud, A.A., Martin, P.M., Heatherly, L., Thompson, J.R., Christen, D.K., List, F.A., Paranthaman, M., Lee, D.F.: High-performance high-Tc superconducting wires. Science. 311, 1911–1914 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    Goyal, A., Kang, S., Leonard, K.J., Martin, P.M., Gapud, A.A., Varela, M., Paranthaman, M., Ijaduola, A.O., Specht, E.D., Thompson, J.R., Christen, D.K., Pennycook, S.J., List, F.A.: Irradiation-free, columnar defects comprised of self-assembled nanodots and nanorods resulting in strongly enhanced flux-pinning in YBa2Cu3O7-d films. Supercond. Sci. Technol. 18(1533–1538), 1533 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    Maiorov, B., Baily, S.A., Zhou, H., Ugurlu, O., Kennison, J.A., Dowden, P.C., Holesinger, T.G., Foltyn, S.R., Civale, L.: Synergetic combination of different types of defect to optimize pinning landscape using BaZrO3-doped YBa2Cu3O7. Nat. Mater. 8, 398–404 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    Horide, T., Kawamura, T., Matsumoto, K., Ichinose, A., Yoshizumi, M., Izumi, T., Shiohara, Y.: Jc improvement by double artificial pinning centers of BaSnO3 nanorods and Y2O3 nanoparticles in YBa2Cu3O7 coated conductors. Supercond. Sci. Technol. 26, 075019 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    Xu, A., Braccini, V., Jaroszynski, J., Xin, Y., Larbalestier, D.C.: Role of weak uncorrelated pinning introduced by BaZrO nanorods at low-temperature in (Gd,Y)Ba2Cu3Ox thin films. Phys. Rev. B. 86, 115416 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    Selvamanickam, V., Chen, Y., Shi, T., Liu, Y., Khatri, N.D., Liu, J., Yao, Y., Xiong, X., Lei, C., Soloveichik, S., Galstyan, E., Majkic, G.: Enhanced critical currents in (Gd,Y)Ba2Cu3Ox superconducting tapes with high levels of Zr addition. Supercond. Sci. Technol. 26, 035006 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    Xu, A., Delgado, L., Khatri, N., Liu, Y., Selvamanickam, V., Abraimov, D., Jaroszynski, J., Kametani, F., Larbalestier, D.C.: Strongly enhanced vortex pinning from 4 to 77 K in magnetic fields up to 31 T in 15 mol.% Zr-added (Gd, Y)-Ba-Cu-O superconducting tapes. APL Mater. 2, 046111 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    Selvamanickam, V., Gharahcheshmeh, M.H., Xu, A., Zhang, Y., Galstyan, E.: Critical current density above 15 MA cm−2 at 30 K, 3T in 2.2μm thick heavily-doped (Gd,Y)Ba2Cu3Ox superconductor tapes. Supercond. Sci. Technol. 28, 072002 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    Selvamanickam, V., Heydari Gharahcheshmeh, M., Xu, A., Zhang, Y., Galstyan, E.: Requirements to achieve high in-field critical current density at 30 K in heavily-doped (Gd,Y)Ba2Cu3Ox superconductor tapes. Supercond. Sci. Technol. 28, 104003 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    Selvamanickam, V., Heydari Gharahcheshmeh, M., Xu, A., Galstyan, E., Delgado, L., Cantoni, C.: High critical currents in heavily doped (Gd,Y)Ba2Cu3Ox superconductor tapes. Appl. Phys. Lett. 106, 032601 (2015)ADSCrossRefGoogle Scholar
  38. 38.
    Abraimov, D., Ballarino, A., Barth, C., Bottura, L., Dietrich, R., Francis, A., Jaroszynski, J., Majkic, G.S., McCallister, J., Polyanskii, A., Rossi, L., Rutt, A., Santos, M., Schlenga, K., Selvamanickam, V., Senatore, C., Usoskin, A., Viouchkov, Y.L.: Double disordered YBCO coated conductors of industrial scale: high currents in high magnetic field. Supercond. Sci. Technol. 28, 114007 (2015)ADSCrossRefGoogle Scholar
  39. 39.
    Mele, P., Matsumoto, K., Horide, T., Ichinose, A., Mukaida, M., Yoshida, Y., Horii, S., Kita, R.: Ultra-high flux pinning properties of BaMO3-doped YBa2Cu3O7-x thin films (M = Zr, Sn). Supercond. Sci. Technol. 21, 032002 (2008)ADSCrossRefGoogle Scholar
  40. 40.
    Awaji, S., Yoshida, Y., Suzuki, T., Watanabe, K., Hikawa, K., Ichino, Y., Izumi, T.: High-performance irreversibility field and flux pinning force density in BaHfO3-doped GdBa2Cu3O7-x tape prepared by pulsed laser deposition. Appl. Phys. Express. 8, 023101 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    Lin, J.-X., Liu, X.-M., Cui, C.-W., Bai, C.-Y., Lu, Y.-M., Fan, F., Guo, Y.-Q., Liu, Z.-Y., Cai, C.-B.: A review of the thickness-induced evolution of microstructure and superconducting performance of REBa2Cu3O7-δ coated conductor. Adv. Manuf. 5, 165 (2017)CrossRefGoogle Scholar
  42. 42.
    Zhou, H., Maiorov, B., Baily, S.A., Dowden, P.C., Kennison, J.A., Stan, L., Holsinger, T.G., Jia, Q.X., Foltyn, S.R., Civale, L.: Thickness dependence of critical current density in YBa2Cu3O7-δ films with BaZrO3 and Y2O3 addition. Supercond. Sci. Technol. 22, 085013 (2009)ADSCrossRefGoogle Scholar
  43. 43.
    Majkic, G., Pratap, R., Xu, A., Galstyan, E., Higley, H.C., Prestemon, S.O., Wang, X., Abraimov, D., Jaroszynski, J., Selvamanickam, V.: Engineering current density over 5kAmm−2 at 4.2K, 14T in thick film REBCO tapes. Supercond. Sci. Technol. 31, 10LT01 (2018)CrossRefGoogle Scholar
  44. 44.
    Xu, A., Zhang, Y., Heydari Gharahcheshmeh, M., Yao, Y., Galstyan, E., Abraimov, D., Kametani, F., Polyanskii, A., Jaroszynski, J., Griffin, V., Majkic, G., Larbalestier, D.C., Selvamanickam, V.: Je(4.2 K, 31.2 T) beyond 1 kA/mm2 of a ~3.2 μm thick, 20 mol% Zr-added MOCVD REBCO coated conductor. Sci. Reports. 7, 6853 (2017)Google Scholar
  45. 45.
    Matsui, H., Ogiso, H., Yamasaki, H., Kumagai, T., Sohma, M., Yamaguchi, I., Manabe, T.: 4-fold enhancement in the critical current density of YBa2Cu3O7 films by practical ion irradiation. Appl. Phys. Lett. 101, 232601 (2012)ADSCrossRefGoogle Scholar
  46. 46.
    Jia, Y., Leroux, M., Miller, D.J., Wen, J.G., Kwok, W.K., Welp, U., Rupich, M.W., Li, X., Sathyamurthy, S., Fleshler, S., Malozemoff, A.P., Kayani, A., Ayala-Valenzuela, O., Civale, L.: Doubling the critical current density of high temperature superconducting coated conductors through proton irradiation. Appl. Phys. Lett. 103, 122601 (2013)ADSCrossRefGoogle Scholar
  47. 47.
    Leonard, K.J., Aytug, T., List III, F.A., Perez-Bergquist, A., Weber, W.J., Gapud, A.: Irradiation response of next generation high temperature superconducting rare earth and nanoparticle-doped YBa2Cu3O7-x coated conductors for fusion energy applications. In: Fusion Reactor Materials Program, December 31, 2013, DOE/ER-0313/55, 54,125–134 (2013)Google Scholar
  48. 48.
    Leonard, K.J., Aytug, T., List III, F.A., Perez-Bergquist, A., Weber, W.J., Gapud, A.: Irradiation response of next generation high temperature superconducting rare earth and nanoparticle-doped YBa2Cu3O7-x coated conductors for fusion energy applications. In: Fusion Reactor Materials Program, December 31, 2013, DOE/ER-0313/55, 55,54 (2013)Google Scholar
  49. 49.
    Leonard, K.J., Aytug, T., Gapud, A.A., List III, F.A., Greenwood, N.T., Zhang, Y., Perez-Bergquist, A.G., Weber, W.J.: Irradiation response of next generation high temperature superconductors for fusion energy applications. Fusion Sci. Technol. 66, 57 (2014)CrossRefGoogle Scholar
  50. 50.
    Matsui, H., Ogiso, H., Yamasaki, H., Sohma, M., Yamaguchi, I., Kumagai, T., Manabe, T.: Influence of middle-energy ion-irradiation on the flux pinning properties of YBCO films: comparison between different synthesis methods. J. Phys. Conf. Ser. 507, 022019 (2014)CrossRefGoogle Scholar
  51. 51.
    Matsui, H., Ootsuka, T., Ogiso, H., Yamasaki, H., Sohma, M., Yamaguchi, I., Kumagai, T., Manabe, T.: Enhancement of critical current density in YBa2Cu3O7 films using a semiconductor ion implanter. J. Appl. Phys. 117, 043911 (2015)ADSCrossRefGoogle Scholar
  52. 52.
    Rupich, M.W., Sathyamurthy, S., Fleshler, S., Li, Q., Solovyov, V., Ozaki, T., Welp, U., Kwok, W.-K., Leroux, M., Koshelev, A.E., Miller, D.J., Kihlstrom, K., Civale, L., Eley, S., Kayani, A.: Engineered pinning landscapes for enhanced 2G coil wire. IEEE Trans. Appl. Supercond. 26, 6601904 (2016)CrossRefGoogle Scholar
  53. 53.
    Leroux, M., Kihlstrom, K.J., Holleis, S., Rupich, M.W., Sathyamurthy, S., Fleshler, S., Sheng, H.P., Miller, D.J., Eley, S., Civale, L., Kayani, A., Niraula, P.M., Welp, U., Kwok, W.-K.: Rapid doubling of the critical current of YBa2Cu3O7-d coated conductors for viable high-speed industrial processing. Appl. Phys. Lett. 107, 192601 (2015)ADSCrossRefGoogle Scholar
  54. 54.
    Gapud, A.A., Greenwood, N.T., Alexander, J.A., Khan, A., Leonard, K.J., Aytug, T., List, F.A., Rupich, M.W., Zhang, Y.: Irradiation response of commercial, high-Tc superconducting tapes: electromagnetic transport properties. J. Nucl. Mater. 462, 108–113 (2015)ADSCrossRefGoogle Scholar
  55. 55.
    Haberkorn, N., Kim, J., Suárez, S., Lee, J.-H., Moon, S.H.: Influence of random point defects introduced by proton irradiation on the flux creep rates and magnetic field dependence of the critical current density Jc of co-evaporated GdBa2Cu3O7-d coated conductors. Supercond. Sci. Technol. 28, 125007 (2015)ADSCrossRefGoogle Scholar
  56. 56.
    Prokopec, R., Fischer, D.X., Weber, H.W., Eisterer, M.: Suitability of coated conductors for fusion magnets in view of their radiation response. Supercond. Sci. Technol. 28, 014005 (2015)ADSCrossRefGoogle Scholar
  57. 57.
    Eley, S., Leroux, M., Rupich, M.W., Miller, D.J., Sheng, H., Niraula, P.M., Kayani, A., Welp, U., Kwok, W.K., Civale, L.: Decoupling and tuning competing effects of different types of defects on flux creep in irradiated YBa2Cu3O7−δ coated conductors Supercond. Sci. Technol. 30, 015010 (2017)ADSGoogle Scholar
  58. 58.
    Kimmel, G.J., Glatz, A.: Extensions and analysis of worst-case parameter in weighted Jacobi’s method for solving second order implicit PDEs. Res. in Appl. Math. 1, 100003 (2019)CrossRefGoogle Scholar
  59. 59.
    Koshelev, A.E., Sadovskyy, I.A., Phillips, C.L., Glatz, A.: Optimization of vortex pinning by nanoparticles using simulations of the time-dependent Ginzburg-Landau model. Phys Rev. B. 93, 060508(R) (2016)ADSCrossRefGoogle Scholar
  60. 60.
    Willa, R., Koshelev, A.E., Sadovskyy, I.A., Glatz, A.: Strong-pinning regimes by spherical inclusions in anisotropic type-II superconductors. Supercond. Sci. Technol. 31, 014001 (2018)ADSCrossRefGoogle Scholar
  61. 61.
    [61]Sadovskyy, I.A., Koshelev, A.E., Glatz, A., Ortalan, V., Rupich, M.W., Leroux, M.: Simulation of the vortex dynamics in a real pinning landscape of YBa2Cu3O7-d coated condutors. Phys. Rev. Applied. 5, 014011 (2016)ADSCrossRefGoogle Scholar
  62. 62.
    Sadovskyy, I.A., Wang, Y.L., Xiao, Z.-L., Kwok, W.-K., Glatz, A.: Effect of hexagonal patterned arrays and defect geometry on the critical current of superconducting films. Phys. Rev. B. 95, 075303 (2017)ADSCrossRefGoogle Scholar
  63. 63.
    Sadovskyy, I.A., Koshelev, A.E., Kwok, W.-K., Welp, U., Glatz, A.: Targeted evolution of pinning landscapes for large superconducting critical currents. Proc. Natl. Acad. Sci. 116, 10291–10296 (2019)ADSCrossRefGoogle Scholar
  64. 64.
    Kimmel, G.J., Glatz, A., Vinokur, V.M., Sadovskyy, I.A.: Edge effect pinning in mesoscopic superconducting strips with non-uniform distribution of defects. Sci. Rep. 9, 211 (2019)ADSCrossRefGoogle Scholar
  65. 65.
    Kimmel, G.J., Sadovskyy, I.A., Glatz, A.: In silico optimization of critical currents in superconductors. Phys. Rev. E. 96, 013318 (2017)ADSCrossRefGoogle Scholar
  66. 66.
    Ortalan, V., Herrera, M., Rupich, M.W., Browning, N.D.: Three dimensional analyses of flux pinning centers in Dy-doped YBa2Cu3O7-x coated conductors by STEM tomography. Physica C. 469, 2052 (2009)ADSCrossRefGoogle Scholar
  67. 67.
    Le Thien, Q., McDermott, D., Reichhardt, C.J.O., Reichhardt, C.: Enhanced pinning for vortices in hyperuniform pinning arrays and emergent hyperuniform vortex configurations with quenched disorder. Phys. Rev. B. 96, 094516 (2017)ADSCrossRefGoogle Scholar
  68. 68.
    Llordés, A., Palau, A., Gázquez, J., Coll, M., Vlad, R., Pomar, A., Arbiol, J., Guzmán, R., Ye, S., Rouco, V., Sandiumenge, F., Ricart, S., Puig, T., Varela, M., Chateigner, D., Vanacken, J., Gutiérrez, J., Moshchalkov, V., Deutscher, G., Magen, C., Obradors, X.: Nanoscale strain-induced pair suppression as a vortex-pinning mechanism in high-temperature superconductors. Nature Mater. 11, 329–336 (2012)ADSCrossRefGoogle Scholar
  69. 69.
    Wu, J., Shi, J.: Interactive modeling-synthesis-characterization approach towards controllable in situ self-assembly of artificial pinning centers in RE-123 films. Supercond. Sci. Technol. 30, 103002 (2017)ADSCrossRefGoogle Scholar
  70. 70.
    Ichino, Y., Yoshida, Y., Miura, S.: Three-dimensional Monte Carlo simulation of nanorod self-organization in REBa2Cu3Oy thin films grown by vapor phase epitaxy. Jpn. J. Appl. Phys. 56, 015601 (2017)ADSCrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2019

Authors and Affiliations

  1. 1.Argonne National LaboratoryLemontUSA

Personalised recommendations