Studies of the Magnetocaloric and Electrical Properties of La0.7Er0.05Sr0.15Ca0.1Mn1−xInxO3 (0 ≤ x ≤ 0.30)

  • Mounira ElabassiEmail author
  • Nadia Zaidi
  • Mohamed Osman Khair


We report on the study of In substitution for Mn on the magnetic and transport properties of layered manganese oxides La0.7Er0.05Sr0.15Ca0.1Mn1−xInxO3 (0 ≤ x ≤ 0.30) synthesized via sol-gel method. For all the samples, all peaks are satisfactorily indexed in the rhombohedra structure with \( R\overline{3}c \) space group. Magnetic data, under a magnetic field of 0.05 T, revealed that our compounds exhibit a continuous (second-order) transition from a ferromagnetic (FM) to a paramagnetic (PM) state upon decreasing the temperature. Also, magnetic entropy change and relative cooling power for magnetic field variation were predicted. Then, we have fitted the experimental data of resistivity using non-linear curve fitting, a typical mathematical function (Gauss function). This function can describe the carrier transport behavior of manganites as a function of temperature around the electrical phase transition. The obtained results were discussed. These predicted parameters agree with the experimental data.


Manganite Magnetocaloric effect Conduction mechanism Gauss function 



  1. 1.
    Abassi, M., Dhahri, N., Dhahri, J., Hlil, E.K.: Structural and large magnetocaloric properties of La0.67−xYxBa0.23Ca0.1MnO3 perovskites (0⩽x⩽0.15). J. Phys. B Condens. Matter. 449, 138–143 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    Abassi, M., Dhahri, N., Dhahri, J., Hlil, E.K.: Percolation model of La0.67−xYxBa0.23Ca0.1MnO3(0⩽x⩽0.15) composites. J. Chem. Phys. 436, 40–45 (2014)Google Scholar
  3. 3.
    Abassi, M., Mohamed, Z., Dhahri, J., Hlil, E.K.: Electrical transport and giant magnetoresistance in La0.62Er0.05Ba0.33FexMn1−xO3 (x = 0.00, and 0.15) manganites. J. Alloys Compd. 639, 197–202 (2015)CrossRefGoogle Scholar
  4. 4.
    Awana, V.P.S., Tripathi, R., Kumar, N., Kishan, H., Bhalla, G.L., Zeng, R., Chandra, L.S.S., Ganesan, V., Habermeier, H.U.: Magnetotransport of La0.70Ca0.3−xSrxMnO3(Ag): a potential room temperature bolometer and magnetic sensor. J. Appl. Phys. 107, 09D723 (2010)CrossRefGoogle Scholar
  5. 5.
    Haghiri-Gosnet, A.M., Renard, J.P.: CMR manganites: physics, thin films and devices. J. Phys. D. Appl. Phys. 36, R127–R150 (2003)CrossRefGoogle Scholar
  6. 6.
    Samanta, T., Das, I., Banerjee, S.: Magnetocaloric effect in Ho5Pd2Ho5Pd2: evidence of large cooling power. J. Appl. Phys. Lett. 91, 082511 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    Moreo, A., Yunoki, S., Dagotto, E.: Phase separation scenario for manganese oxides and related materials. Science. 283, 2034 (1999)CrossRefGoogle Scholar
  8. 8.
    Ghodhbane, S., Dhahri, A., Dhahri, N., Hlil, E.K., Dhahri, J.: Structural, magnetic and magnetocaloric properties of La0.8Ba0.2Mn1−xFexO3 compounds with 0 ⩽ x ⩽ 0.1. J. Alloys Compd. 550, 358–364 (2013)CrossRefGoogle Scholar
  9. 9.
    Tishin, A.M., Spichkin, Y.I.: The Magnetocaloric Effect and its Applications. CRC Press (2003)Google Scholar
  10. 10.
    Zener, C.: Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev. Lett. 82, 403 (1951)ADSGoogle Scholar
  11. 11.
    Millis, A.J., Littlewood, P.B., Shrainman, B.I.: Double exchange alone does not explain the resistivity of La1−xSrxMnO3. Phys. Rev. Lett. 74, 5144 (1995)ADSCrossRefGoogle Scholar
  12. 12.
    Mori, S., Chen, C.H., Cheong, S.W.: Paired and unpaired charge stripes in the ferromagnetic phase of La0.5Ca0.5MnO3. Phys. Rev. Lett. 81, 3972 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    Wang, Z.M., Ni, G., Xu, Q.Y., Sang, H., Du, Y.W.: Magnetocaloric effect in perovskite manganites La0.7−xNdxCa0.3MnO3La0.7−xNdxCa0.3MnO3and La0.7Ca0.3MnO3. J. Appl. Phys. 90, 5689 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    Xiong, C.M., Sun, J.R., Chen, Y.F., Shen, B.G., Du, J., Li, Y.X.: Relation between magnetic entropy and resistivity in La/sub 0.67/Ca/sub 0.33/MnO/sub 3/. IEEE Trans. Magn. 41, 122–124 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    Ramirez: Colossal magnetoresistance. J. Phys. Condens. Matter. 9, 8171 (1997)ADSCrossRefGoogle Scholar
  16. 16.
    Abassi, M., Zaidi, A., Dhahri, J., Hlil, E.K.: Critical scaling and percolation model in La0.57Gd0.1Sr0.33Mn0.9In0.1O3 manganite. J. Alloys Compd. 688, 1251–1259 (2016)CrossRefGoogle Scholar
  17. 17.
    Rietveld, H.M.: A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65 (1969)CrossRefGoogle Scholar
  18. 18.
    A.G. Gamzatov, A.M. Aliev, P.D.H. Yen, K.X. Hau, Kh.E. Kamaludinova, T.D. Thanh, N.T. Dung, S.-C. Yu: Magnetocaloric Effect in La0.7-xPrxSr0.3MnO3 Manganites: Direct and Indirect MeasurementsGoogle Scholar
  19. 19.
    Markovich, V., Fita, I., Puzniak, R., Wisniewski, A., Suzuki, K., Cochrane, J.W., Yuzhelevskii, Y., Mukovskii, Y.M., Gorodetsky, G.: Pressure effects on the magnetic and transport properties of Pr1−xSrxMnO3 crystals near the percolation threshold. Phys. Rev. B: Condens. Matter Mater. Phys. 71, 224409 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    Choudhury, D., Mandal, P., Mathieu, R., Hazarika, A., Rajan, S., Sundaresan, A., Waghmare, U.V., Knut, R., Karis, O., Nordblad, P., Sarma, D.D.: Near-room-temperature colossal magnetodielectricity and multiglass properties in partially disordered La2NiMnO6. Phys. Rev. Lett. 108, 127201–127205 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    Kim, M.S., Yang, J.B., Cai, Q., Zhou, X.D., James, W.J., Yelon, W.B., Parris, P.E., Buddhikot, D., Malik, S.K.: Structure, magnetic, and transport properties of Ti-substituted La0.7Sr0.3MnO3. Phys. Rev. B. 71, 014433–014440 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    Pramanik, A.K., Banerjee, A.: Critical behavior at paramagnetic to ferromagnetic phase transition in Pr0.5Sr0.5MnO3: a bulk magnetization study. Phys. Rev. B: Condens. Matter Mater. Phys. 79, 214426 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    Mira, J., Rivsa, J., Rivadulla, F., Vazquez, C.V., Quintela, M.A.L.: Change from first- to second-order magnetic phase transition in La2/3(Ca,Sr)1/3MnO3 perovskites. Phys. Rev. B: Condens. Matter Mater. Phys. 60, 2998 (1999)ADSCrossRefGoogle Scholar
  24. 24.
    Nam, D.N.H., Jonason, K., Nordblad, P., Khiem, N.V., Phuc, N.X.: Coexistence of ferromagnetic and glassy behavior in the La0.5Sr0.5CoO3 perovskite compound. Phys. Rev. B: Condens. Matter Mater. Phys. 59, 4189 (1999)ADSCrossRefGoogle Scholar
  25. 25.
    Nam, D.N.H., Mathieu, R., Nordblad, P., Khiem, N.V., Phuc, N.X.: Ferromagnetism and frustration in Nd0.7Sr0.3MnO3. Phys. Rev. B: Condens. Matter Mater. Phys. 62, 1027 (2000)ADSCrossRefGoogle Scholar
  26. 26.
    Dhahri, K., Dhahri, N., Dhahri, J., Taibi, K., Hlil, E.K., Belmabroukd, H., Zaidi, M.: Magnetic, magnetocaloric and critical behavior investigation of La0.7Ca0.1Pb0.2Mn1−xyAlxSnyO3 (x, y = 0.0, 0.05 and 0.075) prepared by a sol–gel method. RSC Adv. 7, 43410 (2017)CrossRefGoogle Scholar
  27. 27.
    Dhahri, A., Jemmali, M., Dhahri, E., Valente, M.A.: Structural characterization, magnetic, magnetocaloric properties and phenomenological model in manganite La0.75 Sr0.1Ca0.15 MnO3 compound. J. Alloys Compd. 638, 221–227 (2015)CrossRefGoogle Scholar
  28. 28.
    Hundley, M.F., Hawley, M., Heffner, R.H., Jia, Q.X., Neumeier, J.J., Tesmer, J., Thompson, J.D., Wu, X.D.: Transport-magnetism correlations in the ferromagnetic oxide La0.7Ca0.3MnO3. Appl. Phys. Lett. 67, 860 (1995)ADSCrossRefGoogle Scholar
  29. 29.
    O’Donnell, J., Onellion, M., Rzchowski, M.S., Eckstein, J.N., Bozovic, I.: Magnetoresistance scaling in MBE-grown La0.7Ca0.3MnO3 thin films. Phys. Rev. B. 54, 6841 (1996)ADSCrossRefGoogle Scholar
  30. 30.
    Chen, B., Uher, C., Orelli, D.T., Mantese, J.V., Mance, A.M., Micheli, A.L.: Large magnetothermopower in La0.67Ca0.33MnO3 films. Phys. Rev. B. 53, 5094 (1995)ADSCrossRefGoogle Scholar
  31. 31.
    Xiong, C.M., Sun, J.R., Chen, Y.F., Shen, B.G., Du, J., Li, Y.X.: Relation between magnetic entropy and resistivity in La/sub 0.67/Ca/sub 0.33/MnO/sub 3/. IEEE Trans. Magn. 41, 122 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    O’Donnell, J., Onellion, M., Rzchowski, M.S., Eckstein, J.N.: Magnetoresistance scaling in MBE-grown La0.7Ca0.3MnO3 thin films. Pys. Rev. B: Condens. Matter Mater. Phys. 54, 6841 (1996)ADSCrossRefGoogle Scholar
  33. 33.
    Pękała, M., Drozd, V., Fagnard, J.F., Vanderbemden, P., Ausloos, M.: Magnetotransport of La0.5Ba0.5MnO3. J. Appl. Phys. 105, 013923 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    Nath, A., Chechersky, V., Greene, R.L.: The origin of bulk magnetoresistivity in manganites. J. Solid State Chem. 155, 116 (2000)ADSCrossRefGoogle Scholar
  35. 35.
    Salamon, M.B., Chun, S.H.: Griffiths singularities and magnetoresistive manganites. Phys. Rev. B. 68, 014411 (2003)ADSCrossRefGoogle Scholar
  36. 36.
    Dagotto, E., Burgy, J., Moreo, A.: Nanoscale phase separation in colossal magnetoresistance materials: lessons for the cuprates? J. Solid State Commun. 126, 9 (2003)ADSCrossRefGoogle Scholar
  37. 37.
    Changshi, L.: Prediction of the magneto-resistance of La0.67Ca0.33MnO3 and La0.8Sr0.2MnO3 via temperature and a magnetic field. J. Chem. Eng. Data. 56, 2 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Mounira Elabassi
    • 1
    Email author
  • Nadia Zaidi
    • 2
  • Mohamed Osman Khair
    • 1
  1. 1.Physics Department, Faculty of Education, Afif GovernorateShaqra UniversityShaqraSaudi Arabia
  2. 2.Physics Department, Faculty of ScienceJouf UniversitySakakaSaudi Arabia

Personalised recommendations