Journal of Superconductivity and Novel Magnetism

, Volume 32, Issue 12, pp 3797–3802 | Cite as

Effect of Trapped Magnetic Flux on Neutron Scattering in La1.85Sr0.15CuO4 Superconductor

  • A. A. BykovEmail author
  • D. M. Gokhfeld
  • E. V. Altynbaev
  • K. Yu Terent’ev
  • N. Martin
  • S. V. Semenov
  • S. V. Grigoriev
Original Paper


The superconducting La1.85Sr0.15CuO4 ceramics has been studied by small angle neutron scattering, magnetization measurements, and scanning electron microscopy. Experiments have shown that the intensity of the magnetic scattering is 2–3 times higher in the field cooled regime than in the zero-field cooled regime. Additional magnetic heterogeneities due to closure of the trapped magnetic flux cause the excess scattering in the field cooled regime. The isotropic nature of the scattering is associated with the absence of a preferred direction of the Abrikosov vortices, which is caused by the random orientation of the ab planes of the anisotropic superconductor granules.


Superconductivity SANS Trapped field LSCO · 



The authors are grateful to G.P. Kopitsa and V.V. Runov for fruitful discussions.

Funding Information

The work is supported by the Russian Science Foundation (project No. 17-72-10067).


  1. 1.
    Brandt, E.H.: The flux-line lattice in superconductors. Reports Prog. Phys. 58, 1465–1594 (1995). ADSCrossRefGoogle Scholar
  2. 2.
    Roest, W., Rekveldt, M.T.: Three-dimensional neutron-depolarization analysis of the magnetic flux distribution in YBa2Cu3O7. Phys. Rev. B. 48, 6420–6425 (1993). ADSCrossRefGoogle Scholar
  3. 3.
    Dmitriev, R.P., Jagood, R.Z., Zhuchenko, N.K., Volkov, M.P., Leyarovski, E.I.: A study of the mixed state of the YBa2Cu3O6.9 superconducting ceramics by neutron depolarization. Zeitschrift fur Phys. B Condens. Matter. 83, 155–159 (1991). ADSCrossRefGoogle Scholar
  4. 4.
    Chang, J., White, J.S., Laver, M., Bowell, C.J., Brown, S.P., Holmes, A.T., Maechler, L., Strässle, S., Gilardi, R., Gerber, S., Kurosawa, T., Momono, N., Oda, M., Ido, M., Lipscombe, O.J., Hayden, S.M., Dewhurst, C.D., Vavrin, R., Gavilano, J., Kohlbrecher, J., Forgan, E.M., Mesot, J.: Spin density wave induced disordering of the vortex lattice in superconducting La2−xSrxCuO4. Phys. Rev. B. 85, 134520 (2012). ADSCrossRefGoogle Scholar
  5. 5.
    Gilardi, R., Mesot, J., Drew, A., Divakar, U., Lee, S.L., Forgan, E.M., Zaharko, O., Conder, K., Aswal, V.K., Dewhurst, C.D., Cubitt, R., Momono, N., Oda, M.: Direct evidence for an intrinsic square vortex lattice in the overdoped high-Tc superconductor La1.83Sr0.17CuO4+δ. Phys. Rev. Lett. 88, 217003 (2002). ADSCrossRefGoogle Scholar
  6. 6.
    Li, Y., Egetenmeyer, N., Gavilano, J.L., Barišić, N., Greven, M.: Magnetic vortex lattice in HgBa2CuO4 observed by small-angle neutron scattering. Phys. Rev. B. 83, 054507 (2011). ADSCrossRefGoogle Scholar
  7. 7.
    Brown, S.P., Charalambous, D., Jones, E.C., Forgan, E.M., Kealey, P.G., Erb, A., Kohlbrecher, J.: Triangular to square flux lattice phase transition in YBa2Cu3O7. Phys. Rev. Lett. 92(067004), (2004).
  8. 8.
    White, J.S., Hinkov, V., Heslop, R.W., Lycett, R.J., Forgan, E.M., Bowell, C., Strässle, S., Abrahamsen, A.B., Laver, M., Dewhurst, C.D., Kohlbrecher, J., Gavilano, J.L., Mesot, J., Keimer, B., Erb, A.: Fermi surface and order parameter driven vortex lattice structure transitions in twin-free YBa2Cu3O7. Phys. Rev. Lett. 102(097001), (2009).
  9. 9.
    Eskildsen, M.R., Forgan, E.M., Kawano-Furukawa, H.: Vortex structures, penetration depth and pairing in iron-based superconductors studied by small-angle neutron scattering. Reports Prog. Phys. 74, 124504 (2011). ADSCrossRefGoogle Scholar
  10. 10.
    Chang, J.J., Mesot, J.: Microscopic neutron investigation of the Abrikosov state of high-temperature superconductors. Pramana - J. Phys. 71, 679–685 (2008). ADSCrossRefGoogle Scholar
  11. 11.
    Delamare, M.P., Poullain, G., Simon, C., Sanfilippo, S., Chaud, X., Brûlet, A.: Vortex lattice accommodation on twin boundaries in YBa2Cu3O7 studied by neutron diffraction. Eur. Phys. J. B. 6, 33–38 (1998). ADSCrossRefGoogle Scholar
  12. 12.
    Papoular, R.J., Collin, G.: Polarized-neutron study of the YBa2Cu3O7 system: granular versus bulk superconductivity. Phys. Rev. B. 38, 768–771 (1988). ADSCrossRefGoogle Scholar
  13. 13.
    Kopitsa, G.P., Runov, V.V., Okorokov, A.I., Lyubutin, I.S., Frolov, K.V.: Small-angle polarized neutron scattering in YBa2(Cu0.9Fe0.1)3O7-y ceramics at T =290-550 K. Appl. Phys. A Mater. Sci. Process. 74, s628–s630 (2003). CrossRefGoogle Scholar
  14. 14.
    Kopitsa, G.P., Runov, V.V., Okorokov, A.I.: Spin correlations in YBa2(Cu1−xFx)3O7+y ceramic. Phys. Solid State. 40, 19–22 (1998). ADSCrossRefGoogle Scholar
  15. 15.
    Gordeyev, G., Okorokov, A., Runov, V., Runova, M., Toperverg, B., Brulet, A., Kahn, R., Papoular, R., Rossat-Mignod, J., Glattli, H., Eckerlebe, H., Kampmann, R., Wagner, R.: Small-angle scattering of polarized neutrons in HTSC ceramics. Phys. B Condens. Matter. 234–236, 837–838 (1997). ADSCrossRefGoogle Scholar
  16. 16.
    Chaboussant, G., Désert, S., Lavie, P., Brûlet, A.: PA20 : a new SANS and GISANS project for soft matter, materials and magnetism. J. Phys. Conf. Ser. 340, 012002 (2012). CrossRefGoogle Scholar
  17. 17.
    Landau, I.L., Willems, J.B., Hulliger, J.: Detailed magnetization study of superconducting properties of YBa2Cu3O7−x ceramic spheres. J. Phys. Condens. Matter. 20, 095222 (2008). ADSCrossRefGoogle Scholar
  18. 18.
    Gokhfeld, D.: Critical current density and trapped field in HTS with asymmetric magnetization loops. J. Phys. Conf. Ser. 695, 012008 (2016). CrossRefGoogle Scholar
  19. 19.
    Beaucage, G.: Approximations leading to a unified exponential/power-law approach to small-angle scattering. J. Appl. Crystallogr. 28, 717–728 (2002). CrossRefGoogle Scholar
  20. 20.
    Balaev, D.A., Popkov, S.I., Semenov, S.V., Bykov, A.A., Shaykhutdinov, K.A., Gokhfeld, D.M., Petrov, M.I.: Magnetoresistance hysteresis of bulk textured Bi1.8Pb0.3Sr1.9Ca2Cu3Ox + Ag ceramics and its anisotropy. Phys. C Supercond. its Appl. 470, 61–67 (2010). ADSCrossRefGoogle Scholar
  21. 21.
    Schuster, T., Koblischka, M.R., Moser, N., Kronmüller, H.: Observation of nucleation and annihilation of flux-lines with opposite sign in high-Tc superconductors. Phys. C Supercond. 179, 269–278 (1991). ADSCrossRefGoogle Scholar
  22. 22.
    Schuster, T., Koblischka, M.R., Ludescher, B., Kronmüller, H.: Observation of inverse domains in high T c superconductors. J. Appl. Phys. 72, 1478–1485 (1992). ADSCrossRefGoogle Scholar
  23. 23.
    Potratz, R., Klein, W., Habermeier, H.U., Kronmüller, H.: The determination of flux density gradients in Nb3Sn diffusion layers by means of the magneto-optical faraday effect. Phys. Status Solidi. 60, 417–426 (1980). ADSCrossRefGoogle Scholar
  24. 24.
    Bugoslavsky, Y.V., Kovalsky, V.A., Minakov, A.A., Kojima, H., Tanaka, I.: Orientation of the flux line lattice in anisotropic superconductors. J. Magn. Magn. Mater. 157–158, 671–672 (1996). ADSCrossRefGoogle Scholar
  25. 25.
    Gokhfel’d, D.M., Balaev, D.A., Semenov, S.V., Petrov, M.I.: Magnetoresistance anisotropy and scaling in textured high-temperature superconductor Bi1.8Pb0.3Sr1.9Ca2Cu3O x. Phys. Solid State. 57, 2145–2150 (2015). ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.NRC Kurchatov Institute – PNPIGatchinaRussia
  2. 2.Federal Research Center KSC SB RASKirensky Institute of PhysicsKrasnoyarskRussia
  3. 3.Laboratoire Léon Brillouin, CEA, CNRSUniversité Paris-SaclayGif-sur-YvetteFrance
  4. 4.Saint-Petersburg State UniversitySaint-PetersburgRussia

Personalised recommendations