Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 32, Issue 12, pp 3987–3994 | Cite as

Effect of Carbon Doping on the Structure and Magnetocaloric Properties of Mn1.15Fe0.80P0.50Si0.50 Compounds

  • Q. Zhou
  • Z. G. ZhengEmail author
  • Z. G. Qiu
  • Y. Hong
  • Y. Mozharivskyj
  • D. C. ZengEmail author
Original Paper
  • 108 Downloads

Abstract

The Mn1.15Fe0.80P0.50Si0.50Cx compounds with x = 0, 0.01, 0.03, and 0.05 were prepared by twice solid-phase sintering and we investigated the changes of the structure and magnetocaloric properties by C doping. All samples are found to show Fe2P-type structure with minor impurity phase and some carbon atoms enter into Fe2P-type main phase and occupy the interstitial site. Carbon addition leads to an increase of the Curie temperature from 289 to 321 K and the thermal hysteresis has a reduction about 31.5%. All samples show distinct first-order magnetic transition. The peak value of magnetic entropy change and adiabatic temperature change is increased by 26% and 11% with addition of carbon under a low field of 0–2 T, respectively. The large magnetocaloric effect might be resulted from the latent heat of phase transition induced by temperature derived from calorimetric measurements. The results indicate that (Mn,Fe)2PSiC compound with large magnetocaloric effect is a good candidate for room temperature magnetic refrigeration.

Keywords

Carbon doping Magnetocaloric effect Thermal hysteresis (Mn,Fe)2PSi compounds 

Notes

Funding Information

This work was financially supported by the Guangdong Provincial Science and Technology Program (Grant No. 2015A050502015), the Guangzhou Municipal Science and Technology Program (No. 201707010056), and the Fundamental Research Funds for the Central Universities and Natural Science Foundation of Guangdong Province (No. 2016A030313494, 2018A030313615, 2018A030310406).

References

  1. 1.
    Yu, B., Liu, M., Egolf, W.P., Kitanovski, A.: A review of magnetic refrigerator and heat pump prototypes built before the year 2010. Int. J. Refrig. 33, 1029–1060 (2010)CrossRefGoogle Scholar
  2. 2.
    Brück, E.: Developments in magnetocaloric refrigeration. J. Phys. D. Appl. Phys. 38, R381–R391 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    Gschneidner Jr, K.A., Pecharsky, V.K., Tsokol, A.O.: Recent developments in magnetocaloric materials. Rep. Prog. Phys. 68, 1479–1539 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    Yu, B., Gao, Q., Zhang, B., et al.: Review on research of room temperature magnetic refrigeration. Int. J. Refrig. 26, 622–636 (2003)CrossRefGoogle Scholar
  5. 5.
    Pecharsky, V.K., Gschneidner, K.A.J.: Giant Magnetocaloric Effect in Gd5(Si2Ge2). Phys. Rev. Lett. 78, 4494–4497 (1997)ADSCrossRefGoogle Scholar
  6. 6.
    Wada, H., Tanabe, Y.: Giant magnetocaloric effect of MnAs1-xSbx. Appl. Phys. Lett. 79, 3302–3304 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    Hu, F., Shen, B., Sun, J., et al.: Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6. Appl. Phys. Lett. 78, 3675–3677 (2001)ADSCrossRefGoogle Scholar
  8. 8.
    Fujita, A., Fujieda, S., Hasegawa, Y., Fukamichi, K.: Itinerant-electron metamagnetic transition and large magnetocaloric effects in La(FexSi1-x)13 compounds and their hydrides. Phys. Rev. B. 67, 552–555 (2003)Google Scholar
  9. 9.
    Liu, J., Krautz, M., Skokov, K., et al.: Systematic study of the microstructure, entropy change and adiabatic temperature change in optimized La-Fe-Si alloys. Acta Mater. 59, 3602–3611 (2011)CrossRefGoogle Scholar
  10. 10.
    Tegus, O., Brück, E., Buschow, K.H.J., de, B.F.R.: Transition-metal-based magnetic refrigerants for room-temperature applications. Nature. 415, 150–152 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    Trung, N.T., Ou, Z., Gortenmulder, T.J., et al.: Tunable thermal hysteresis in MnFe(P,Ge) compounds. Appl. Phys. Lett. 94, R381 (2009)CrossRefGoogle Scholar
  12. 12.
    Cam Thanh, D.T., Brück, E., Trung, N.T., et al.: Structure, magnetism, and magnetocaloric properties of MnFeP1−xSix compounds. J. Appl. Phys. 103, 07B318 (2008)CrossRefGoogle Scholar
  13. 13.
    Guillou, F., Porcari, G., Yibole, H., et al.: Taming the first-order transition in giant magnetocaloric materials. Adv. Mater. 26, 2671–2675 (2014)CrossRefGoogle Scholar
  14. 14.
    Yu, H., Zhu, Z., Lai, J., et al.: Enhance magnetocaloric effects in Mn1.15Fe0.85P0.52Si0.45B0.03 alloy achieved by copper-mould casting and annealing treatments. J. Alloys Compd. 649, 1043–1047 (2015)CrossRefGoogle Scholar
  15. 15.
    Hu, F., Shen, B., Sun, J., Guang-heng, W.: Large magnetic entropy change in a Heusler alloy Ni52.6Mn23.1Ga24.3 single crystal. Phys. Rev. B. 64, 419–427 (2001)Google Scholar
  16. 16.
    Kainuma, R., Imano, Y., Ito, W., et al.: Magnetic-field-induced shape recovery by reverse phase transformation. Nature. 439, 957–960 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    Liu, J., Gottschall, T., Skokov, K.P., et al.: Giant magnetocaloric effect driven by structural transitions. Nat. Mater. 11, 620–626 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    Annaorazov, M.P., Asatryan, K.A., Myalikgulyev, G., et al.: Alloys of the FeRh system as a new class of working material for magnetic refrigerators. Cryogenics (Guildf). 32, 867–872 (1992)ADSCrossRefGoogle Scholar
  19. 19.
    Guillou, F., Yibole, H., Porcari, G., Brück, E.: Boron addition in MnFe(P,Si) magnetocaloric materials: interstitial vs substitutional scenarii. Phys. Status Solidi. 11, 1007–1010 (2014)CrossRefGoogle Scholar
  20. 20.
    Guillou, F., Yibole, H., van, D.N.H., Brück, E.: Effect of boron substitution on the ferromagnetic transition of MnFe0.95P2/3Si1/3. J. Alloys Compd. 632, 717–722 (2015)CrossRefGoogle Scholar
  21. 21.
    Thang, N.V., Miao, X., Van, D.N.H., Brück, E.: Structural and magnetocaloric properties of (Mn,Fe)2(P,Si) materials with added nitrogen. J. Alloys Compd. 670, 123–127 (2016)CrossRefGoogle Scholar
  22. 22.
    Miao, X., Thang, N.V., Caron, L., et al.: Tuning the magnetoelastic transition in (Mn,Fe)2(P,Si) by B, C, and N doping. Scr. Mater. 124, 129–132 (2016)CrossRefGoogle Scholar
  23. 23.
    Thang, N.V., van Dijk, N.H., Brück, E.: Tuneable giant magnetocaloric effect in (Mn,Fe)2(P,Si) materials by Co-B and Ni-B co-doping. Materials (Basel). 10, 14 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    Ou, Z., Zhang, L., Dung, N.H., et al.: Neutron diffraction study on the magnetic structure of Fe2P-based Mn0.66Fe1.29P1-xSix melt-spun ribbons. J. Magn. Magn. Mater. 340, 80–85 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    Yue, M., Li, Z., Wang, X., et al.: Crystal structure and magnetic transition of MnFePGe compound prepared by spark plasma sintering. J. Appl. Phys. 105, 08Q107 (2009)CrossRefGoogle Scholar
  26. 26.
    Thang, N.V., Yibole, H., Van Dijk, N.H., Brück, E.: Effect of heat treatment conditions on MnFe(P,Si,B) compounds for room-temperature magnetic refrigeration. J. Alloys Compd. 699, 633–637 (2017)CrossRefGoogle Scholar
  27. 27.
    Miao, X., Caron, L., Roy, P., et al.: Tuning the phase transition in transition-metal-based magnetocaloric compounds. Phys. Rev. B. 89, 174429 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    Dung, N.H., Zhang, L., Ou, Z., et al.: High/low-moment phase transition in hexagonal Mn-Fe-P-Si compounds. Phys. Rev. B. 86, 045134 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    Thang, N.V., Yibole, H., Miao, X., et al.: Effect of carbon doping on the structure and magnetic phase transition in (Mn,Fe2(P,Si)). JOM. 69, 1432–1438 (2017)CrossRefGoogle Scholar
  30. 30.
    He, A., Svitlyk, V., Mozharivskyj, Y.: Synthetic approach for (Mn,Fe)2(Si,P) magnetocaloric materials: purity, structural, magnetic, and magnetocaloric properties. Inorg. Chem. 56, 2827–2833 (2017)CrossRefGoogle Scholar
  31. 31.
    Ferrari, A.C., Robertson, J.: Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Phil Trans R Soc Lond A. 362, 2477–2512 (2004)ADSCrossRefGoogle Scholar
  32. 32.
    Malard, L.M., Pimenta, M.A., Dresselhaus, G., Dresselhaus, M.S.: Raman spectroscopy in graphene. Phys. Rep. 473, 51–87 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    Zheng, Z., Zeng, D., Qiu, Z.: The room temperature large magnetocaloric effects with a wide temperature span in Gd70Y30-xFex alloys[J]. J. Magn. Magn. Mater. 465, 19–24 (2018)ADSCrossRefGoogle Scholar
  34. 34.
    Yue, M., Liu, D., Huang, Q., et al.: Structure evolution and entropy change of temperature and magnetic field induced magneto-structural transition in Mn1.1Fe0.9P0.76Ge0.24. J. Appl. Phys. 113, 043925 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science & EngineeringSouth China University of TechnologyGuangzhouPeople’s Republic of China
  2. 2.Department of Chemistry and Chemical BiologyMcMaster UniversityHamiltonCanada

Personalised recommendations