Journal of Superconductivity and Novel Magnetism

, Volume 32, Issue 12, pp 3933–3938 | Cite as

Small Thermal Magnetization Loop Revealed by Bain Strain

  • Numan ŞarlıEmail author
  • Yılmaz Dağdemir
  • Buket Saatçi
Original Paper


In this work, we investigate the effects of the FCC-BCC Bain transformation on the magnetic properties. We focus on the Bain corresponding that of BCC martensite phase which emerges via a contraction of the z-axis by about 20% and an expansion of the x- and y-axis by about 12% in the FCC austenite phase. To obtain Bain strain, we consider the BCT lattice (from the FCC with a = 2a) and we apply the Bain strain to BCT lattice as aBCT = bBCT = a\( \sqrt{2} \) and cBCT = 2a. Then, with the contraction of the z-axis by 20% and an expansion of the x- and y-axis by 13.137% of BCT lattice, we obtain a new BCC martensite lattice with aBCC = 1.6a. We find that the differences in the magnetization of austenite BCT lattice and martensite BCC lattice are very small. Therefore, we obtain very small thermal magnetization loop area versus temperature and we suggest that the prediction of Edgar Collins Bain on FCC-BCC transformations (or Bain strain) is remarkable and very successful.


Thermal magnetization Edgar Collins Bain Bain strain Bain model Ising model Effective field theory 



We would like to express our thanks to the Computer Center of Erciyes University.

Funding Information

This work was supported by the Erciyes University Research funds, Grant No: FBA-2018-8513.


  1. 1.
    Bain, E.C., Dunkirk, N.Y.: The nature of martensite. Trans. Metall. Soc. AIME. 70, 25–47 (1924)Google Scholar
  2. 2.
    Bowles, J.S., Wayman, C.M.: The Bain strain, lattice correspondences, and deformations related to martensitic transformations. Metall. Trans. A. 3, 1113–1121 (1972)ADSCrossRefGoogle Scholar
  3. 3.
    Hahn, E., Kampshoff, E., Walchli, N., Kern, K.: Strain driven fcc-bct phase transition of pseudomorphic Cu films on Pd(100). Phys. Rev. Lett. 74, 1803–1809 (1995)ADSCrossRefGoogle Scholar
  4. 4.
    Cuenya, B.R., Doi, M., Löbus, S., Courths, R., Keune, W.: Observation of the fcc-to-bcc Bain transformation in epitaxial Fe ultathin films on Cu3Au(001). Surf. Sci. 493, 338–360 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    Buschbeck, J., Opahle, I., Richter, M., Rößler, U.K., Klaer, P., Kallmayer, M., Elmers, H.J., Jakob, G., Schultz, L., Fahler, S.: Full tunability of strain along the fcc-bcc Bain path in epitaxial films and consequences for magnetic properties. Phys. Rev. Lett. 103, 216101 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    Bauer, R., Bischoff, E., Mittemeijer, E.J.: Precipitation of Co from supersaturated Au90Co10: microstructure and kinetics. Int. J. Mater. Res. 102, 1027–1041 (2011)CrossRefGoogle Scholar
  7. 7.
    Zoubi, N.A., Johansson, B., Nilson, G., Vitos, L.: The Bain path of paramagnetic Fe-Cr based alloys. J. Appl. Phys. 110, 013708 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    Degtyareva, V.F.: The fcc–bcc Bain path in In–Sn and related alloys at ambient and high pressure. J. Phys. Condens. Matter. 21, 095702 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    Casey, M.T., Scarlett, R.T., Rogers, W.B., Jenkins, L., Sinno, T., Crocker, J.C.: Driving diffusionless transformations in colloidal crystals using DNA handshaking. Nat. Commun. 3, 1209 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    Kirn, Y.D., Wayman, C.M.: Shape memory effect in powder metallurgy NiAl alloys. Scr. Merallurgica. 24, 245–250 (1990)Google Scholar
  11. 11.
    Heo, Y.U., Kim, M., Lee, H.C.: Transformation of ordered face-centered tetragonal h-MnNi phase to face-centered cubic austenite during isothermal aging of an Fe–Mn–Ni alloy. Acta Mater. 56, 1306–1314 (2008)CrossRefGoogle Scholar
  12. 12.
    Otsuka, K., Ren, X.: Martensitic transformations in nonferrous shape memory alloys. Mater. Sci. Eng. A. 273, 89–105 (1999)CrossRefGoogle Scholar
  13. 13.
    Otsuka, K., Ren, X.: Recent developments in the research of shape memory alloys. Intermetallics. 7, 511–528 (1999)CrossRefGoogle Scholar
  14. 14.
    Heo, Y.U., Takeguchi, M., Furuya, K., Lee, H.C.: Transformation of DO24 g-Ni3Ti phase to face-centered cubic austenite during isothermal aging of an Fe–Ni–Ti alloy. Acta Mater. 57, 1176–1187 (2009)CrossRefGoogle Scholar
  15. 15.
    Kurdjumov, G.V., Sachs, G.: Über den Mechanismus der Stahlhärtung. Z. Phys. 64, 325–343 (1930)ADSCrossRefGoogle Scholar
  16. 16.
    Nishiyama, Z.: Mechanism of transformation from face-centred to body-centred cubic lattice. Sci. Rep. Tohoku Imperial Univ. 23, 637–664 (1934)Google Scholar
  17. 17.
    Wassermann, G.: influß der α-γ-Umwandlung eines irreversiblen Nickelstahls auf Kristallorientierung und Zugfestigkeit. Archiv. Eisenhuttenwesen. 6, 347–351 (1933)Google Scholar
  18. 18.
    Greninger, A.B., Troiano, A.R.: The mechanism of martensitic transformation. J Mater Trans. 185, 590–598 (1949)Google Scholar
  19. 19.
    Pitsch, W.: The martensite transformation in thin foils of iron-nitrogen alloys. Philos. Mag. 4, 577–584 (1959)ADSCrossRefGoogle Scholar
  20. 20.
    Sandoval, L., Urbassek, H.M., Entel, P.: The Bain versus Nishiyama–Wassermann path in the martensitic transformation of Fe. New J. Phys. 11(10), 103027 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    Kaneyoshi, T.: Magnetizations of a nanoparticle described by the transverse Ising model. J. Magn. Magn. Mater. 321, 3430–3435 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    Kaneyoshi, T.: Ferrimagnetic magnetizations of transverse Ising thin films with diluted surfaces. J. Magn. Magn. Mater. 321, 3630–3636 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    Kaneyoshi, T.: Magnetizations of a transverse Ising nanowire. J. Magn. Magn. Mater. 322, 3410–3415 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    Kaneyoshi, T.: Phase diagrams of a transverse Ising nanowire. J. Magn. Magn. Mater. 322, 3014–3018 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    Kaneyoshi, T.: Clear distinctions between ferromagnetic and ferrimagnetic behaviors in a cylindrical Ising nanowire (or nanotube). J. Magn. Magn. Mater. 323, 2483–2486 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    Kaneyoshi, T.: Some characteristic properties of initial susceptibility in aIsing nanotube. J. Magn. Magn. Mater. 323, 1145–1151 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    Kaneyoshi, T.: Ferrimagnetism in a ultra-thin decorated Ising film. J. Magn. Magn. Mater. 336, 8–13 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    Kaneyoshi, T.: Reentrant phenomena in a transverse Ising nanowire (or nanotube) with a diluted surface: effects of interlayer coupling at the surface. J. Magn. Magn. Mater. 339, 151–156 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    Kaneyoshi, T.: Ferrimagnetic magnetizations in a thin film described by the transverse Ising model. Phys. Status Solidi B. 246, 2359–2365 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    Kaneyoshi, T.: Magnetic properties of a cylindrical Ising nanowire (or nanotube). Phys. Status Solidi B. 248, 250–258 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    Kaneyoshi, T.: Phase diagrams of a cylindrical transverse Isingferrimagnetic nanotube, effects of surface dilution. Solid State Commun. 151, 1528–1532 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    Kaneyoshi, T.: The possibility of a compensation point induced by a transverse field in transverse Ising nanoparticles with a negative core–shell coupling. Solid State Commun. 152, 883–886 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    Kaneyoshi, T.: Ferrimagnetism in a decorated Ising nanowire. Phys. Lett. A. 376, 2352–2356 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    Kaneyoshi, T.: The effects of surface dilution on magnetic properties in a transverse Ising nanowire. Physica A. 391, 3616–3628 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    Kaneyoshi, T.: Phase diagrams in an Ising nanotube (or nanowire) with a diluted surface; effects of interlayer coupling at the surface. Physica A. 392, 2406–2414 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    Kaneyoshi, T.: Characteristic phenomena in nanoscaled transverse Ising thin films with diluted surfaces. Physica B. 407, 4358–4364 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    Kaneyoshi, T.: Phase diagrams in a ultra-thin transverse Ising film with bond or site dilution at surfaces. Physica B. 414, 72–77 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    Kaneyoshi, T.: Characteristic behaviors in an ultrathin Ising film with site- (or bond-) dilution at the surfaces. Physica B. 436, 208–214 (2014)ADSCrossRefGoogle Scholar
  39. 39.
    Jiang, W., Li, X.X., Liu, L.M., Chen, J.N., Zhang, F.: Hysteresis loop of a cubic nanowire in the presence of the crystal field and the transverse field. J. Magn. Magn. Mater. 353, 90–98 (2014)ADSCrossRefGoogle Scholar
  40. 40.
    Ertaş, M., Kocakaplan, Y.: Dynamic behaviors of the hexagonal Ising nanowire. Phys. Lett. A. 378, 845–850 (2014)ADSzbMATHCrossRefGoogle Scholar
  41. 41.
    Kantar, E., Keskin, M.: Thermal and magnetic properties of ternary mixed Ising nanoparticles with core-shell structure: effective-field theory approach. J. Magn. Magn. Mater. 349, 165–172 (2014)ADSCrossRefGoogle Scholar
  42. 42.
    Magoussi, H., Zaim, A., Kerouad, M.: Effects of the trimodal random field on the magnetic properties of a spin-1 Ising nanotube. Chin. Phys. B. 22, 116401 (2013)ADSCrossRefGoogle Scholar
  43. 43.
    Wang, C.D., Ma, R.G.: Force induced phase transition of honeycomb-structured ferroelectric thin film. Physica A. 392, 3570–3577 (2013)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Bouhou, S., Essaoudi, I., Ainane, A., Saber, M., Ahuja, R., Dujardin, F.: Phase diagrams of diluted transverse Ising nanowire. J. Magn. Magn. Mater. 336, 75–82 (2013)ADSCrossRefGoogle Scholar
  45. 45.
    Zaim, A., Kerouad, M., Boughrara, M.: Effects of the random field on the magnetic behavior of nanowires with core/shell morphology. J. Magn. Magn. Mater. 331, 37–44 (2013)ADSCrossRefGoogle Scholar
  46. 46.
    Şarlı, N.: Band structure of the susceptibility, internal energy and specific heat in a mixed core/shell Ising nanotube. Physica B. 411, 12–25 (2013)ADSCrossRefGoogle Scholar
  47. 47.
    Şarlı, N., Keskin, M.: Two distinct magnetic susceptibility peaks and magnetic reversal events in a cylindrical core/shell spin-1 Ising nanowire. Solid State Commun. 152, 354–359 (2012)ADSCrossRefGoogle Scholar
  48. 48.
    Keskin, M., Şarlı, N., Deviren, B.: Hysteresis behaviors in a cylindrical Ising nanowire. Solid State Commun. 151, 1025–1030 (2011)ADSCrossRefGoogle Scholar
  49. 49.
    Yüksel, Y., Akıncı, Ü., Polat, H.: Investigation of bond dilution effects on the magnetic properties of a cylindrical Ising nanowire. Phys. Status Solidi B. 250, 196–206 (2013)ADSCrossRefGoogle Scholar
  50. 50.
    Şarlı, N.: Generation of an external magnetic field with the spin orientation effect in a single layer Ising nanographene. Phys. E. 83, 22–29 (2016)CrossRefGoogle Scholar
  51. 51.
    Şarlı, N., Akbudak, S., Ellialtıoğlu, M.R.: The peak effect (PE) region of the antiferromagnetic two layer Isingnanographene. Physica B. 452, 18–22 (2014)ADSCrossRefGoogle Scholar
  52. 52.
    Şarlı, N., Akbudak, S., Polat, Y., Ellialtıoğlu, M.R.: Effective distance of a ferromagnetic trilayer Ising nanostructure with an ABA stacking sequence. Physica A. 434, 194–200 (2015)ADSCrossRefGoogle Scholar
  53. 53.
    Şarlı, N.: Artificial magnetism in a carbon diamond nanolattice with the spin orientation effect. Diam. Relat. Mater. 64, 103–109 (2016)ADSCrossRefGoogle Scholar
  54. 54.
    Keskin, M., Şarlı, N.: Magnetic properties of the binary nickel/bismuth alloy. J. Magn. Magn. Mater. 437, 1–6 (2017)ADSCrossRefGoogle Scholar
  55. 55.
    Şarlı, N., Ak, F., Özdemir, E.G., Saatçi, B., Merdan, Z.: Key role of central antimony in magnetization of Ni0.5Co1.5MnSb quaternary Heusler alloy revealed by comparison between theory and experiment. Physica B. 560, 46–50 (2019)ADSCrossRefGoogle Scholar
  56. 56.
    Keskin, M., Şarlı, N.: Superconducting phase diagram of the yttrium, barium and YBa core in YBCO by an Ising model. J. Exp. Theor. Phys. 127, 516–524 (2019)ADSCrossRefGoogle Scholar
  57. 57.
    Şarlı, N., Yıldız, G.D., Yıldız, Y.G., Yağcı, N.K.: Magnetic properties of the martensitic transformations with twinned and detwinned. Physica B. 553, 161–168 (2019)ADSCrossRefGoogle Scholar
  58. 58.
    Şarlı, N., Keskin, M.: Effects of the copper and oxygen atoms of the CuO-plane on magnetic properties of the YBCO by using the effective-field theory. Chin. J. Phys. 59, 256–264 (2019)CrossRefGoogle Scholar
  59. 59.
    Yıldız, Y.G.: Origin of the hardness in the monolayer nanographene. Phys. Lett. A. 383, 2333–2338 (2019). ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Numan Şarlı
    • 1
    Email author
  • Yılmaz Dağdemir
    • 1
  • Buket Saatçi
    • 1
  1. 1.Department of Physics, Faculty of ScienceErciyes UniversityKayseriTurkey

Personalised recommendations