Journal of Superconductivity and Novel Magnetism

, Volume 32, Issue 12, pp 3893–3900 | Cite as

The Magnetism and Transport Properties of Bare and Hydrogenated Borophene Nanoribbons

  • Junchao Jin
  • Zhiyong WangEmail author
  • Xueqiong Dai
  • Mengqiu Long
Original Paper


In this paper, we have investigated the magnetism and transport properties of borophene nanoribbons by using the first-principles calculations based on density functional theory. It can be seen that the hydrogenated borophene nanoribbons are more stable than the bare borophene nanoribbons. The magnetism of borophene nanoribbon can be modulated by the edge’s hydrogenated. Interestingly, with regard to the hydrogenated armchair borophene nanoribbons, the current increases with the increase of bias voltage when V ≤ 1.0 V, and then the current decreases with the increase of bias voltage when V > 1.0 V, namely, it appears negative differential resistance effect. It is hoped that borophene may be useful for the design and application of spintronic devices.


Borophene Density functional theory Magnetism Transport properties 


Funding Information

This study is financially supported by the National Natural Science Foundation of China (Grant No. 11564008), the Natural Science Foundation of Guangxi Province (Grant No. 2017GXNSFAA198195), and the Innovation Project of Guangxi Graduate Education (Grant No. YCSW2018160) and the Shanghai Supercomputer Center.


  1. 1.
    Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science. 306, 666–669 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    Novoselov, K.S., Jiang, Z., Zhang, Y., Morozov, S.V., Stormer, H.L., Zeitler, U., Maan, J.C., Boebinger, G.S., Kim, P., Geim, A.K.: Room-temperature quantum hall effect in graphene. Science. 315, 1379 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: Electronic properties of graphene nanostructures. Rev. Mod. Phys. 81, 109 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    Neto, A.H.C., Novoselov, K.: New directions in science and technology: two-dimensional crystals. Rep. Prog. Phys. 74, 082501 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    Li, M., Zhang, D., Gao, Y., Cao, C., Long, M.: Half-metallicity and spin-polarization transport properties in transition-metal atoms single-edge-terminated zigzag α-graphyne nanoribbons. Org. Electron. 44, 168–175 (2017)CrossRefGoogle Scholar
  6. 6.
    Cui, L.-L., Long, M.-q., Zhang, X., Li, X.-M., Zhang, D., Yang, B.-C.: Spin-dependent transport properties of hetero-junction based on zigzag graphene nanoribbons with edge hydrogenation and oxidation. Phys. Lett. A. 380, 730–738 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    Zhang, D., Long, M., Zhang, X., Ouyang, J., Xu, H.: Perfect spin filtering, rectifying and negative differential resistance effects in armchair graphene nanoribbons with poor and rich electrons doping. J. Appl. Phys. 121, 093903 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    Hu, S., Lozada-Hidalgo, M., Wang, F.C., Mishchenko, A., Schedin, F., Nair, R.R., Hill, E.W., Boukhvalov, D.W., Katsnelson, M.I., Dryfe, R.A.W., Grigorieva, I.V., Wu, H.A., Geim, A.K.: Proton transport through one-atom-thick crystals. Nature. 516, 227 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    Vogt, P., De Padova, P., Quaresima, C., Avila, J., Frantzeskakis, E., Asensio, M.C., et al.: Silicene: compelling experimental evidence for graphene like two-dimensional silicon. Phys. Rev. Lett. 108, 155501 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    Behera, H., Mukhopadhyay, G.: First-principles study of structural and electronic properties of germanene. AIP Conf. Proc. 1349(1), 823–824 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    Zhang, D., Long, M., Cui, L., Xiao, J., Pan, C.: Perfect spin-filtering and switching functions in zigzag silicene nanoribbons with hydrogen modification. Org. Electron. 62, 253–260 (2018)CrossRefGoogle Scholar
  12. 12.
    Zhu, F.-f., Chen, W.-j., Xu, Y., Gao, C.-l., Guan, D.-d., Liu, C.-h., Qian, D., Zhang, S.-C., Jia, J.-f.: Epitaxial growth of two-dimensional stanene. Nat. Mater. 14(10), 1020–1025 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    Li, L., Yu, Y., Ye, G.J., Ge, Q., Ou, X., Wu, H., Feng, D., Chen, X.H., Zhang, Y.: Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    Xie, F., Fan, Z.-Q., Zhang, X.-J., Liu, J.-P., Wang, H.-Y., Liu, K., Yu, J.-H., Long, M.-Q.: Tuning of the electronic and transport properties of phosphorene nanoribbons by edge types and edge defects. Org. Electron. 42, 21–27 (2017)CrossRefGoogle Scholar
  15. 15.
    Sun, M., Wang, Z., Jin, J., Xiao, J., Dai, X., Long, M.: Modulating the electronic properties and magnetism of bilayer phosphorene with small gas molecules adsorbing. J. Supercond. Nov. Magn. 31(8), 2529–2537 (2018)CrossRefGoogle Scholar
  16. 16.
    Dong, Y., Zeng, B., Xiao, J., XiaojiaoZhang, D.L., Li, M., He, J., Long, M.: Effect of sulphur vacancy and interlayer interaction on the electronic structure and spin splitting of bilayer MoS2. J. Phys. Condens. Matter. 30(12), 125302 (2018)ADSCrossRefGoogle Scholar
  17. 17.
    Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S.: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    Mannix, A.J., Zhou, X.-F., Kiraly, B., Wood, J.D., Alducin, D., Myers, B.D., Liu, X., Fisher, B.L., Santiago, U., Guest, J.R., Yacaman, M.J., Ponce, A., Oganov, A.R., Hersam, M.C., Guisinger, N.P.: Synthesis of borophenes: anisotropic, twodimensional boron polymorphs. Science. 350, 1513–1516 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    Peng, B., Zhang, H., Shao, H., Xu, Y., Zhang, R., Zhu, H.: Electronic, optical, and thermodynamic properties of borophene from first-principle calculations. J. Mater. Chem. C. 4(16), 3592–3598 (2016)CrossRefGoogle Scholar
  20. 20.
    Garcia-Fuente, A., Carrete, J., Vega, A., Gallego, L.J.: What will freestanding borophene nanoribbons look like? An analysis of their possible structures, magnetism and transport properties. Phys. Chem. Chem. Phys. 19, 1054–1061 (2017)CrossRefGoogle Scholar
  21. 21.
    Feng, B., Zhang, J., Zhong, Q., Li, W., Li, S., Li, H., Cheng, P., Meng, S., Chen, L., Wu, K.: Experimental realization of two-dimensional boron sheets. Nat. Chem. 8, 563–568 (2016)CrossRefGoogle Scholar
  22. 22.
    Xu, L.C., Du, A., Kou, L.: Hydrogenated borophene as a stable two-dimensional Dirac material with ultrahigh Fermi velocity. Phys. Chem. Chem. Phys. 18, 27284–27289 (2016)CrossRefGoogle Scholar
  23. 23.
    Nagarajan, V., Chandiramouli, R.: Borophene nanosheet molecular device for detection of ethanol–a first-principles study. Computational and Theoretical Chemistry. 1105, 52–60 (2017)CrossRefGoogle Scholar
  24. 24.
    Le, M.Q., Mortazavi, B., Rabczuk, T.: Mechanical properties of borophene films:a reactive molecular dynamics investigation. Nanotechnology. 27, 445709 (2016)CrossRefGoogle Scholar
  25. 25.
    Xiao, R.C., Shao, D.F., Lu, W.J., Lv, H.Y., Li, J.Y., Sun, Y.P.: Enhanced superconductivity by strain and carrier-doping in borophene: a first principles prediction. Appl. Phys. Lett. 109, 122604 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    Gao, M., Li, Q.-Z., Yan, X.-W., Wang, J.: Prediction of phonon-mediated superconductivity in borophene. Phys. Rev. B: Condens. Matter Mater. Phys. 95, 024505 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    Padilha, J.E., Miwa, R.H., Fazzio, A.: Directional dependence of the electronic and transport properties of 2D borophene and borophane. Phys. Chem. Chem. Phys. 18, 25491–25496 (2016)CrossRefGoogle Scholar
  28. 28.
    P. Ordejon, E. Artacho, J.M. Soler, Phys. Rev. B. 53, R10441 1996ADSCrossRefGoogle Scholar
  29. 29.
    Soler, J.M., Artacho, E., Gale, J.D., Garc’ıa, A., Junquera, J., Ordejon, P., S’anchez-Portal, D.: The SIESTA method for ab initio order-N materials simulation. J. Phys.: Condens. Matter. 14, 2745 (2002)ADSGoogle Scholar
  30. 30.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)ADSCrossRefGoogle Scholar
  31. 31.
    Chadi, D.J., Cohen, M.L.: Special points in the Brillouin zone. Phys. Rev. B. 8, 5747–5753 (1973)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Brandbyge, M., Mozos, J.-L., Ordejon, P., Taylor, L., Stokbro, K.: Density-functional method for nonequilibrium electron transport. Phys. Rev. B: Condens. Matter Mater. Phys. 65(16), 5401 (2001)Google Scholar
  33. 33.
    Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge (1995)CrossRefGoogle Scholar
  34. 34.
    Zhang, X., Hu, J., Cheng, Y., Yang, H.Y., Yao, Y., Yang, S.A.: Borophene as an extremely high capacity electrode material for Li-ion and Na-ion batteries. Nanoscale. 8, 15340–15347 (2016)CrossRefGoogle Scholar
  35. 35.
    Mortazavi, B., Dianat, A., Rahaman, O., Cuniberti, G., Rabczuk, T.: Borophene as an anode material for Ca, Mg, Na or Li ion storage: a first-principle study. J. Power Sources. 329, 456–461 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    Liang, P., Cao, Y., Tai, B., Zhang, L., Shu, H.B., Li, F.: Is borophene a suitable anode material for sodium ion battery? J. Alloys Compd. 704, 152–159 (2017)CrossRefGoogle Scholar
  37. 37.
    Srivastava, A., Chandiramouli, R.: First-principles insights on electron transport in V2O5 nanostructures. Mater. Sci. Eng. B. 201, 45–50 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of ScienceGuilin University of TechnologyGuilinChina
  2. 2.Modern Education Technology CenterGuilin University of TechnologyGuilinChina
  3. 3.Hunan Key laboratory of Super Micro-structure and Ultrafast ProcessCentral South UniversityChangshaChina

Personalised recommendations