Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 32, Issue 12, pp 3755–3760 | Cite as

Investigation of the Magnetic and Transport Properties of YBa2Cu3O7-δ High Temperature Superconductor Doped with Graphene Oxide

  • S. Falahati
  • S. DadrasEmail author
  • J. Mosqueira
Original Paper
  • 68 Downloads

Abstract

Magneto transport and magnetization are studied in graphene oxide (GO)-doped YBa2Cu3O7-δ (YBCO) high-temperature superconductor. The samples were prepared by sol-gel method with different weight percentage (0, 0.3, 0.5 wt.%) of GO. The transition temperature of GO-doped samples did not change in comparison with the pure YBCO. However, SEM images show that the GO doping reduces the grain average diameter, which results in an enhancement (up to a factor of ~ 2) of the critical current density and of the flux pinning force in the presence of different applied magnetic fields.

Keywords

YBCO high-temperature superconductor Critical current density Magnetoresistance Graphene oxide doping 

Notes

Acknowledgments

Financial support was provided by Alzahra University. Also, financial support was provided by Fondo Europeo de Desarrollo Regional (FEDER)/Ministerio de Ciencia, Innovación y Universidades, Agencia Estatal de Investigación (project FIS2016-79109-P), Xunta de Galicia (grant ED431C 2018/11), Xunta de Galicia and FEDER (network ED431D 2017/06 and strategic group ED431E 2018/08), and by the CA16218 Nanocohybri COST Action (EU Framework Programme Horizon 2020).

References

  1. 1.
    Goyal, A., Kang, S., Leonard, K.J., Martin, P.M., Gapud, A.A., Varela, M., Paranthaman, M., Ijaduola, A.O., Specht, E.D., Thompson, J.R., Christen, D.K., Pennycook, S.J., List, F.A.: Supercond. Sci. Technol. 18, 1533–1538 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    Marinel, S., Desgardin, G.: J. Eur. Ceram. Soc. 21, 1919–1923 (2001)CrossRefGoogle Scholar
  3. 3.
    Dadras, S., Gharehgazloo, Z.: Physica B. 492, 45–49 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    Gautam, B., Sebastian, M.A., Chen, S., Haugan, T., Zhang, W., Huang, J., Wang, H., Wu, J.Z.: Supercond. Sci. Technol. 31, 025008 (2018)ADSCrossRefGoogle Scholar
  5. 5.
    Malik, B.A., Malik, M.A., Asokan, K.: Curr. Appl. Phys. 16, 1270–1276 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    Dadras, S., Liu, Y., Chai, Y.S., Daadmehr, V., Kim, K.H.: Physica C. 469, 55–59 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    Hannachi, E., Slimani, Y., Ben Azzouz, F., Ekicibil, A.: Ceram. Int. 44, 18836–18843 (2018)CrossRefGoogle Scholar
  8. 8.
    Slimani, Y., Almessiere, M.A., Hannachi, E., Baykal, A., Manikandan, A., Mumtaz, M., Ben Azzouz, F.: Ceram. Int. 45, 2621–2628 (2019)CrossRefGoogle Scholar
  9. 9.
    He, Y., Chen, Q., Yang, S., Lu, C., Feng, M., Jiang, Y., Zhang, J., Liu, C.: Compos. Part A. 108, 12–22 (2018)CrossRefGoogle Scholar
  10. 10.
    Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T., Ruoff, R.S.: Nature. 442, 282–286 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    Biswas, S., Drzal, L.T.: Chem. Mater. 22, 5667–5671 (2010)CrossRefGoogle Scholar
  12. 12.
    Kumar, N.A., Choi, H.J., Shin, Y.R., Chang, D.W., Dai, L., Baek, J.B.: ACS Nano. 6(2), 1715–1723 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    Kuila, T., Mishra, A.K., Khanra, P., Kim, N.H., Lee, J.H.: Nanoscale. 5, 52–71 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    Guerrero-Contreras, J., Caballero-Briones, F.: Mater. Chem. Phys. 153, 209–220 (2015)CrossRefGoogle Scholar
  15. 15.
    Sudesh, N.K., Das, S., Bernhard, C., Varma, G.D.: Supercond. Sci. Technol. 26, 095008 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    De Silva, K.S.B., Aboutalebi, S.H., Xu, X., Wang, X.L., Li, W.X., Konstantinov, K., Dou, S.X.: Scr. Mater. 69, 437–440 (2013)CrossRefGoogle Scholar
  17. 17.
    Yeoh, W.K., Cui, X.Y., Gault, B., De Silva, K.S.B., Xu, X., Liu, H.W., Wong, D., Bao, P., Larson, D.J., Martin, I., Li, W.X., Zheng, R.K., Wang, X.L., Yen, H.W., Dou, S.X., Ringer, S.P.: Nanoscale. 6, 6166–6172 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    Sudesh, S., Das, C., Bernhard, G.D., Varma: Physica C. 505, 32–38 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    Dadras, S., Dehghani, S., Davoudiniya, M., Falahati, S.: Mater. Chem. Phys. 193, 496–500 (2017)CrossRefGoogle Scholar
  20. 20.
    Dadras, S., Hekmat, M., Safari, M.R., Daadmehr, V.: Iran. J. Phys. Res. 6(3), 201–208 (2006)Google Scholar
  21. 21.
    Bean, C.P.: Rev. Mod. Phys. 36, 31–39 (1964)ADSCrossRefGoogle Scholar
  22. 22.
    Xu, C., Hu, A., Ichihara, M., Sakai, N., Hirabayashi, I., Izumi, M.: Physica C. 460–462, 1341–1342 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    Mele, P., Guzman, R., Gazquez, J., Puig, T., Obradors, X., Saini, S., Yoshida, Y., Mukaida, M., Ichinose, A., Matsumoto, K., Adam, M.I.: Supercond. Sci. Technol. 28, 024002 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsAlzahra UniversityTehranIran
  2. 2.Quantum Materials and Photonics Research Group, Particle Physics DepartmentUniversity of Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations