Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 32, Issue 12, pp 3729–3737 | Cite as

Effect of Hydrostatic Pressure on Superconductivity of FeSe Thin Films

  • R. SchneiderEmail author
  • A. G. Zaitsev
  • A. Beck
  • D. Fuchs
  • R. Hott
Original Research
  • 94 Downloads

Abstract

The electronic transport in superconducting epitaxial c-axis-oriented FeSe thin films grown on (001)-oriented MgO substrates was investigated. To this end, the in-plane resistivity was measured in dependence on temperature, pressure, and magnetic field. The temperature ranged from 1.2 to 35 K; static magnetic fields with strengths up to 14 T were applied normal to the film surface, i.e. parallel to the FeSe c-axis; and hydrostatic pressure was applied from 0 to 2.7 GPa. Concerning the role of the MgO substrate in the pressure experiments, it is suggested that the substrate mainly reduces the in-plane compressibility of the film in comparison to bulk. The transition to superconductivity shifted to higher temperatures with increasing pressure. The onset critical temperature raised from 11.5 K at zero applied pressure with an initial rate of 2.5 K/GPa to 18.2 K at 2.7 GPa. The pressure-induced increase of the critical temperature was accompanied by a twofold broadening of the transition width. As a counterpart of pressure, the magnetic field shifted the superconducting transition to lower temperature. In addition to pressure, the field also induced a noticeable broadening of the superconductive transition rather than a parallel shift. The positive magnetoresistance at 20 K increased with enhanced pressure and reached 24% at the highest pressure and field. For each applied pressure, the magnetoresistance could be fitted by a Lorentzian function, i.e. it originates from classical Lorentz scattering. The resulting charge carrier mobility increased under pressure suggesting a decreasing collision rate. The upper critical field raised with higher pressure. Its temperature dependence could be fitted by conventional Werthamer-Hohenberg-Helfand theory under the assumption of the Pauli paramagnetic effect that became more pronounced under pressure. The anomalous behaviour of the normalized negative slope of the upper critical field at the critical temperature suggested a change of the Fermi surface above a critical pressure of 2 GPa.

Keywords

Chalcogenides Hydrostatic pressure Superconductivity Transport properties 

Notes

References

  1. 1.
    Chu, C.W., Lorenz, B.: Physica C. 469, 385 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    Sefat, A.S.: Rep. Prog. Phys. 74, 124502 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    Okabe, H., Takeshita, N., Horigane, K., Muranaka, T., Akimitsu, J.: Phys. Rev. B. 81, 205119 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    Margadonna, S., Takabayashi, Y., Ohishi, Y., Mizuguchi, Y., Takano, Y., Kagayama, T., Nakagawa, T., Takata, M., Prassides, K.: Phys. Rev. B. 80, 064506 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    Naghavi, S.S., Chadov, S., Felser, C.: J. Phys. Condens. Matter. 23, 205601 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    Kumar, R.S., Zhang, Y., Sinogeikin, S., Xiao, Y., Kumar, S., Chow, P., Cornelius, A.L., Chen, C.: J. Phys. Chem. B. 114, 12597 (2010)CrossRefGoogle Scholar
  7. 7.
    Medvedev, S., McQueen, T.M., Troyan, I.A., Palosyuk, T., Eremets, M.I., Cava, R.J., Naghavi, S., Casper, F., Ksenofontov, V., Wortmann, G., Felser, C.: Nat Mater. 8, 630 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    Garbarino, G., Sow, A., Lejay, P., Sulpice, A., Toulemonde, P., Mezouar, M., Núñez-Regueiro, M.: Europhys. Lett. 86, 27001 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    Braithwaite, D., Salce, B., Lapertot, G., Bourdarot, F., Marin, C., Aoki, D., Hanfland, M.: J. Phys. Condens. Matter. 21, 232202 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    Sun, J.P., Matsuura, K., Ye, G.Z., Mizukami, Y., Shimozawa, M., Matsubayashi, K., Yamashita, M., Watashige, T., Kasahara, S., Matsuda, Y., Yan, J.-Q., Sales, B.C., Uwatoko, Y., Cheng, J.-G., Shibauchi, T.: Nat. Commun. 7, 12146 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    Kang, J.-H., Jung, S.-G., Lee, S., Park, E., Lin, J.-Y., Chareev, D.A., Vasiliev, A.N., Park, T.: Supercond. Sci. Technol. 29, 035007 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    Terashima, T., Kikugawa, N., Kiswandhi, A., Graf, D., Choi, E.-S., Brooks, J.S., Kasahara, S., Watashige, T., Matsuda, Y., Shibauchi, T., Wolf, T., Böhmer, A.E., Hardy, F., Meingast, C.: v. Löhneysen, H., Uji, S. Phys. Rev. B. 094505, 93 (2016)Google Scholar
  13. 13.
    Terashima, T., Kikugawa, N., Kasahara, S., Katashige, T., Matsuda, Y., Shibauchi, T., Uji, S.: Phys. Rev. B. 93, 180503(R) (2016)ADSCrossRefGoogle Scholar
  14. 14.
    Kaluarachchi, U.S., Taufour, V., Böhmer, A.E., Tanatar, M.A., Bud’ko, S.L., Kogan, V.G., Prozorov, R., Canfield, P.C.: Phys. Rev. B. 93, 064503 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    Gooch, M., Lorenz, B., Huang, S.X., Chien, C.L., Chu, C.W.: J. Appl. Phys. 111, 112610 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    Mizuguchi, Y., Tomioka, F., Tsuda, S., Yamaguchi, T., Takano, Y.: Appl. Phys. Lett. 93, 152505 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    Mizuguchi, Y., Hara, Y., Deguchi, K., Tsuda, S., Yamaguchi, T., Takeda, K., Kategawa, H., Tou, H., Takano, Y.: Supercond. Sci. Technol. 23, 054013 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    Huang, S.X., Chien, C.L., Thampy, V., Broholm, C.: Phys. Rev. Lett. 104, 217002 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Bellingeri, E., Pallecchi, I., Buzio, R., Gerbi, A., Marrè, D., Cimberle, M.R., Tropeano, M., Putti, M., Palenzona, A., Ferdeghini, C.: Appl. Phys. Lett. 96, 102512 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    Schneider, R., Zaitsev, A.G., Fuchs, D., Fromknecht, R.: Supercond. Sci. Technol. 26, 055014 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    Schneider, R., Zaitsev, A.G., Fuchs, D., Hott, R.: Supercond. Sci. Technol. 32, 025001 (2019)ADSCrossRefGoogle Scholar
  22. 22.
    Schneider, R., Zaitsev, A.G., Fuchs, D., von Löhneysen, H.: J. Phys. Condens. Matter. 26, 455701 (2014)CrossRefGoogle Scholar
  23. 23.
    Zaitsev, A.G., Schneider, R., Fuchs, D., Beck, A., Hott, R.: J. Phys. Conf. Ser. 507, 012054 (2014)CrossRefGoogle Scholar
  24. 24.
    Murata, K., Yokogawa, K., Yoshino, H., Klotz, S., Munsch, P., Irizawa, A., Nishiyama, M., Iizuka, K., Nanba, T., Okada, T., Shiraga, Y., Aoyama, S.: Rev. Sci. Instrum. 79, 085101 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    Eiling, A., Schilling, J.S.: J. Phys. F: Metal Phys. 11, 623 (1981)ADSCrossRefGoogle Scholar
  26. 26.
    Yokogawa, K., Murata, K., Yoshino, H., Aoyama, S.: Jpn. J. Appl. Phys. 46, 3636 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    Van der Pauw, L.W.: Philips Tech Rev. 20, 220 (1958)Google Scholar
  28. 28.
    Knöner, S., Zielke, D., Köhler, S., Wolf, B., Wolf, T., Wang, L., Böhmer, A., Meingast, C., Lang, M.: Phys. Rev. B. 91, 174510 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    Imai, T., Ahilan, K., Ning, F.L., McQueen, T.M., Cava, R.J.: Phys. Rev. Lett. 102, 177005 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    Ghorbani, S.R., Wang, X.L., Shabazi, M., Dou, S.K., Choi, K.Y., Lin, C.T.: Appl. Phys. Lett. 100, 072603 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    Huynh, K.K., Tanabe, Y., Urata, T., Oguro, H., Heguri, S., Watanabe, K., Tanigaki, K.: Phys. Rev. B. 90, 144516 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    Watson, M.D., Yamashita, T., Kasahara, S., Knafo, W., Nardone, M., Béard, J., Hardy, F., McCollam, A., Narayanan, A., Blake, S.F., Wolf, T., Haghighirad, A.A., Meingast, C., Schofield, A.J., von Löhneysen, H., Matsuda, Y., Coldea, A.I., Shibauchi, T.: Phys. Rev. Lett. 115, 027006 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    Pippard, A.B.: Magnetoresistance in metals. Cambridge University press (1989)Google Scholar
  34. 34.
    Suski, T., Wiśniewski, P., Litwin-Staszewska, E., Kassut, J., Wilamowski, Z., Dietl, T., Światek, K., Ploog, K., Knecht, J.: Semicond. Sci. Technol. 5, 261 (1990)ADSCrossRefGoogle Scholar
  35. 35.
    Rang, Z., Nathan, M.I., Ruden, P.P., Podzorov, V., Gershenson, M.E., Newman, C.R., Frisbie, C.D.: Appl. Phys. Lett. 86, 123501 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    Nguyen, T.P., Shim, J.H.: Phys. Chem. Chem. Phys. 18, 13888 (2016)CrossRefGoogle Scholar
  37. 37.
    Nayak, A.P., Yuan, Z., Cao, B., Liu, J., Wu, J., Moran, S.T., Li, T., Akinwande, D., Jin, C., Lin, J.-F.: ACS Nano. 9, 9117 (2015)CrossRefGoogle Scholar
  38. 38.
    Werthamer, N.R., Helfand, E., Hohenberg, P.C.: Phys. Rev. 147, 295 (1966)ADSCrossRefGoogle Scholar
  39. 39.
    Audouard, A., Duc, F., Drigo, L., Toulemonde, P., Karlsson, S., Strobel, P., Sulpice, A.: Europhys. Lett. 109, 27003 (2015)ADSCrossRefGoogle Scholar
  40. 40.
    Her, J.L., Kohama, Y., Matsuda, Y.H., Kindo, K., Yang, W.-H., Chareev, D.A., Mitrofanova, E.S., Volkova, O.S., Vasiliev, A.N., Lin, J.-Y.: Supercond. Sci. Technol. 28, 045013 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    Gati, E., Xiang, L., Wang, L.-L., Manni, S., Canfield, P.C., Bud’ko, S.L.: J. Phys. Condens. Matter. 31, 035701 (2019)ADSCrossRefGoogle Scholar
  42. 42.
    Kogan, V.G., Prozorov, R.: Rep. Prog. Phys. 75, 114502 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut für FestkörperphysikKarlsruher Institut für TechnologieKarlsruheGermany

Personalised recommendations