Journal of Superconductivity and Novel Magnetism

, Volume 32, Issue 12, pp 3901–3905 | Cite as

Structural, Electronic, and Magnetic Properties of Hard Magnetic SmNi2Fe Compound: a DFT Study

  • S. AkbudakEmail author
  • A. Candan
  • M. Özduran
Original Research


Permanent magnets with high magnetic properties are used in many areas like motors, generators, magnetic separators, handles, electron tubes, magnetic resonance imaging systems, health, electronics, automotive, and mining. Due to their easy and inexpensive production methods, most common permanent magnets are ferrite magnets. However, the quest for finding new and alternative permanent magnets is still in progress. Thus, in this study, lattice parameters (a, c), equilibrium lattice volume (V), density (ρ), formation energy (Ef), Wyckoff positions, magnetic moments, density of states. and electronic band structure of SmNi2Fe are investigated using density functional theory (DFT) calculations. For exchange-correlation relations, PBE method within generalized gradient approximation (GGA) and (GGA + U) is used. With a 8.628 μB (GGA) and 9.886 μB (GGA + U) total magnetic moment, SmNi2Fe shows a strong permanent magnetism. Obtained negative formation enthalpy of SmNi2Fe (− 1.526 eV/f.u.) clearly shows that studied material can be synthesized experimentally. Besides, density of states and spin polarized electronic band structures indicate that SmNi2Fe is metallic. Calculated lattice parameters of SmNi2Fe are in good agreement with literature.


Permanent magnets Density functional theory (DFT) Magnetic moment Formation enthalpy Electronic properties 



  1. 1.
    Coey, J.M.D.: Hard magnetic materials: a perspective. IEEE Trans. Magn. 47, 4671–4681 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    Fei, C., Zhang, Y., Yang, Z., Liu, Y., Xiong, R., Shi, J., Ruan, X.: Synthesis and magnetic properties of hardmagnetic (CoFe2O4)–soft magnetic (Fe3O4) nano-composite ceramics by SPS technology. J. Magn. Magn. Mater. 323, 1811–1816 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    Zhang, D.T., Cao, S., Yue, M., Liu, W.Q., Zhang, J.X., Qiang, Y.: Structural and magnetic properties of bulk MnBi permanent magnets. J. Appl. Phys. 109, 07A722 (2011)CrossRefGoogle Scholar
  4. 4.
    Buschov, K.H.J.: New developments in hard magnetic materials. Rep. Prog. Phys. 54, 1123–1213 (1991)ADSCrossRefGoogle Scholar
  5. 5.
    Kirchmayr, H.R.: Permanent magnets and hard magnetic materials. J. Phys. D. Appl. Phys. 29, 2763–2778 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    Li, D., Pan, D.S., Li, S.J., Zhang, Z.D.: Recent developments of rare-earth-free hard magnetic materials. Science China Physics, Mechanics & Astronomy. 59, 617501 (2016)CrossRefGoogle Scholar
  7. 7.
    Skomski, R. and Coey, J. M. D.: Permanent Magnetism, IOP, 1999 A Monograph Focussed on the Physics of Permanent Magnetism, with chapters on experimental methods, materials and applicationsGoogle Scholar
  8. 8.
    Campbell, P.: Permanent Magnet Materials and their Applications, CUP, 1994 207 ppA Short and Readable Book for EngineersGoogle Scholar
  9. 9.
    Abele, P.: Stuctures of Permanent Magnets, Wiley, 1998A Monograph on Magnet Structures which Generate Static Magnetic FieldsGoogle Scholar
  10. 10.
    Gutfleisch, O., Willard, M.A., Brück, E., Chen, C.H., Sankar, S.G., Liu, J.P.: Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient. Adv. Mater. 23, 821–842 (2011)CrossRefGoogle Scholar
  11. 11.
    Pina, E., Palomares, F.J., Garcia, M.A., Cebollada, F., Hoyos, A.D., Romeroa, J.J., Hernandoa, A., Gonza ́lez, J.M.: Coercivity in SmCo hard magnetic films for MEMS applications. J. Magn. Magn. Mater. 290, 1234–291, 1236 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    Zhu, J.G., Park, C.: Magnetic tunnel junctions. Mater. Today. 9, 36–45 (2006)CrossRefGoogle Scholar
  13. 13.
    Jiles, D.C.: Recent advances and future directions in magnetic materials. Acta Mater. 51, 5907–5939 (2003)CrossRefGoogle Scholar
  14. 14.
    Zhang, J., Zhou, G., Chen, G., Latroche, M., Percheron-Gue’gan, A., Sun, D.: Relevance of hydrogen storage properties of ANi3 intermetallics (A = La, Ce, Y) to the ANi2 subunits in their crystal structures. Acta Mater. 56, 5388–5394 (2008)CrossRefGoogle Scholar
  15. 15.
    Herbst, J.F., Croat, J.J.: Magnetization of RFe3 intermetallic compounds: molecular field theory analysis. J. Appl. Phys. 53, 4304 (1982)ADSCrossRefGoogle Scholar
  16. 16.
    Shafiq, M., Ahmad, I., Asadabadi, S.J.: Theoretical studies of strongly correlated rare earth intermetallics RIn3 and RSn3 (R = Sm, Eu, and Gd). J. Appl. Phys. 116, 103905 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    Wasylechko, L.O., Grin, Y.N., Fedorchuk, A.A.: CeNi3-type ternary phases in the R-Ni-Ga systems (R = Y, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu). J. Alloy. Compd. 219, 222–224 (1995)CrossRefGoogle Scholar
  18. 18.
    Coey, J.M.D., Sun, H.: Improved magnetic properties by treatment of iron-based rare earth intermetallic compounds in anmonia. J. Magn. Magn. Mater. 87, L251–L254 (1990)ADSCrossRefGoogle Scholar
  19. 19.
    Burkert, T., Nordstrom, L., Eriksson, O., Heinonen, O.: Phys. Rev. Lett. 93, 027203 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    Wu, D.X., Zhang, Q.M., Liu, J.P., Yuan, D.W., Wu, R.Q.: Appl. Phys. Lett. 92, 052503 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    Verma, A., Verma, P., Sidhu, R.K.: Matrix effect in soft metal-bonded samarium-cobalt (SmCos) permanent magnets. Bull. Mater. Sci. 19, 539–548 (1996)CrossRefGoogle Scholar
  22. 22.
    Das, D.K.: Twenty million energy product samarium-cobalt magnet. IEEE Trans. Magn, MAG. 5, 3 (1969)CrossRefGoogle Scholar
  23. 23.
    Blackmore, E.W.: Radiation effects of protons on samarium-cobalt permanent magnets. IEEE Trans. Nucl. Sci. NS. 32, 3669–3671 (1985)ADSCrossRefGoogle Scholar
  24. 24.
    Duerrschnabel, M., Yi, M., Uestuener, K., Liesegang, M., Katter, M., Kleebe, H.-J., Xu, B., Gutfleisch, O., Molina-Luna, L.: Atomic structure and domain wall pinning in samarium-cobalt-based permanent magnets. Nat. Commun. 8(54), 54 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    Söderlind, P., Landa, A., Locht, I.L.M., Åberg, D., Kvashnin, Y., Pereiro, M., Däne, M., Turchi, P.E.A., Antropov, V.P., Eriksson, O.: Prediction of the new efficient permanent magnet SmCoNiFe3. Phys. Rev. B. 96, 100404(R) (2017)ADSCrossRefGoogle Scholar
  26. 26.
    Nouri, K., Jemmali, M., Walha, S., Zehani, K., Bessais, L., Salah, A.B.: The isothermal section phase diagram of the Sm-Fe-Ni ternary system at 800°C. J. Alloy. Compd. 661, 508–515 (2016)CrossRefGoogle Scholar
  27. 27.
    Matsuura, M., Yarimizu, K., Osawa, Y., Tezuka, N., Sugimoto, S., Ishikawa, T., Yoneyama, Y.: J. Magn. Magn. Mater. 471, 310–314 (2019)ADSCrossRefGoogle Scholar
  28. 28.
    Nouri, K., Bouzidi, W., Jemmali, M., Hentech, I., Dhahri, E., Bessais, L.: Effect of ball-milling on magnetic properties of uniaxial nanocrystalline SmNi2Fe compound. J. Electron. Mater. 47, 1658–1664 (2018)ADSCrossRefGoogle Scholar
  29. 29.
    Riley, M.A., Walmsley, A.D., Harris, I.R.: Magnets in prosthetic dentistry. J. Prosthet. Dent. 86, 137–142 (2001)CrossRefGoogle Scholar
  30. 30.
    Riley, M.A., Walmsley, A.D., Speight, J.D., Harris, I.R.: Magnets in medicine. Mater. Sci. Tech. 18, 1 (2002)CrossRefGoogle Scholar
  31. 31.
    Kresse, G., Hafner, J.: Phys. Rev. B. 48, 13115 (1993)ADSCrossRefGoogle Scholar
  32. 32.
    Kresse, G., Furthmuller, J.: Phys. Rev. B. 54, 11169 (1996)ADSCrossRefGoogle Scholar
  33. 33.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  34. 34.
    Huang, G.Y., Wang, C.Y., Wang, J.T.: Comp. Phys. Comm. 183, 1749–1752 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    Monkhorst, H.J., Pack, J.D.: Phys. Rev. B. 13, 5188 (1976)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    Blöchl, P.E., Jepsen, O., Andersen, O.K.: Phys. Rev. B. 49, 16223 (1994)ADSCrossRefGoogle Scholar
  37. 37.
    Candan, A., Akbudak, S., Uğur, Ş., Uğur, G.: J. Alloys Compd. 771, 664–673 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, Faculty of Arts and SciencesAdıyaman UniversityAdıyamanTurkey
  2. 2.Department of Machinery and Metal TechnologyAhi Evran UniversityKırşehirTurkey
  3. 3.Department of Physics, Faculty of Arts and SciencesAhi Evran UniversityKırşehirTurkey

Personalised recommendations