Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 32, Issue 11, pp 3655–3669 | Cite as

Effect Cr3+ Ion Substitution on the Structural, Magnetic, and Dielectric Behavior of Co–Cu Ferrite

  • Chandan C. Naik
  • A. V. SalkerEmail author
Original Paper
  • 208 Downloads

Abstract

Cr3+ substituted cobalt–copper ferrites with chemical composition Co0.9Cu0.1Fe2−xCrxO4 (where x = 0.00, 0.03, 0.06, 0.09, 0.12, and 0.15) were prepared by sol–gel mediated auto combustion route utilizing malic acid as a complexing agent. The effect of incorporation of Cr3+ ions in low concentration on the structural, magnetic, dielectric, and electrical features of the Co–Cu ferrite compounds was investigated. The crystalline nature and variation in crystallite size with substituent content were identified from X-ray diffraction. Cr3+ substitution for Fe in the Co–Cu ferrite leads to a monotonic decrease in the saturation magnetization at 300 K as well as at 50 K, which could be credited to the decrease in strength of superexchange interaction on the substitution of Fe3+ ions by weakly magnetic Cr3+ ions in the octahedral site. Substitution of small fractions Cr3+ ions for some of the Fe in cobalt–copper ferrites decreased the Curie temperature. A decreasing pattern in DC resistivity with an increase in temperature was observed ensuring the semiconducting character of the ferrites under test. Dielectric properties such as dielectric constant (ε′) and dielectric loss (tan δ) of prepared materials were investigated.

Keywords

Cr3+ substitution Magnetic studies Mӧssbauer spectroscopy Co–Cu ferrite Dielectric studies 

Notes

Acknowledgments

The authors gratefully acknowledge Dr. V Sathe and Dr. V R Reddy, UGC-DAE consortium for scientific research, Indore, Madhya Pradesh, India, for providing Raman and Mӧssbauer facility. The authors are also thankful to UGC-BSR program, New Delhi, for providing UGC-BSR fellowship.

Supplementary material

10948_2019_5153_MOESM1_ESM.docx (15 kb)
ESM 1 (DOCX 14 kb)

References

  1. 1.
    Harris, V.G., Geiler, A., Chen, Y., Yoon, S.D., Wu, M., Yang, A., Chen, Z., He, P., Parimi, P.V., Zuo, X., Patton, C.E., Abe, M., Acher, O., Vittoria, C.: Recent advances in processing and applications of microwave ferrites. J. Magn. Magn. Mater. 321, 2035–2047 (2009).  https://doi.org/10.1016/j.jmmm.2009.01.004 ADSCrossRefGoogle Scholar
  2. 2.
    Fu, Y., Chen, Q., He, M., Wan, Y., Sun, X., Xia, H., Wang, X.: Copper ferrite-graphene hybrid: a multifunctional heteroarchitecture for photocatalysis and energy storage. Ind. Eng. Chem. Res. 51, 11700–11709 (2012).  https://doi.org/10.1021/ie301347j CrossRefGoogle Scholar
  3. 3.
    Tsoncheva, T., Manova, E., Velinov, N., Paneva, D., Popova, M., Kunev, B., Tenchev, K., Mitov, I.: Thermally synthesized nanosized copper ferrites as catalysts for environment protection. Catal. Commun. 12, 105–109 (2010).  https://doi.org/10.1016/j.catcom.2010.08.007 CrossRefGoogle Scholar
  4. 4.
    Lasheras, X., Insausti, M., Gil De Muro, I., Garaio, E., Plazaola, F., Moros, M., De Matteis, L., De La Fuente, J.M., Lezama, L.: Chemical synthesis and magnetic properties of monodisperse nickel ferrite nanoparticles for biomedical applications. J. Phys. Chem. C. 120, 3492–3500 (2016).  https://doi.org/10.1021/acs.jpcc.5b10216 CrossRefGoogle Scholar
  5. 5.
    Pan, U., Sanpui, P., Paul, A., Chattopadhyay, A.: Surface complexed-zinc ferrite magnetofluorescent nanoparticles for killing cancer cells and single particle level cellular imaging. ACS Appl. Nano Mater. 1, 2496–2502 (2018).  https://doi.org/10.1021/acsanm.8b00545 CrossRefGoogle Scholar
  6. 6.
    Mohit, K., Rani, V., Gupta, N., Rout, S.K.: Structural and microwave characterization of. Ceram. Int. 40, 1575–1586 (2014).  https://doi.org/10.1016/j.ceramint.2013.07.045 CrossRefGoogle Scholar
  7. 7.
    Kefeni, K.K., Msagati, T.A.M., Mamba, B.B.: Ferrite nanoparticles: synthesis, characterisation and applications in electronic device. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 215, 37–55 (2017).  https://doi.org/10.1016/j.mseb.2016.11.002 CrossRefGoogle Scholar
  8. 8.
    Kaur, M., Kaur, N.: Vibha: ferrites: synthesis and applications for environmental remediation. ACS Symp. Ser. 1238, 113–136 (2016).  https://doi.org/10.1021/bk-2016-1238.ch004 CrossRefGoogle Scholar
  9. 9.
    Singh, R.N., Singh, N.K., Singh, J.P.: Electrocatalytic properties of new active ternary ferrite film anodes for O2 evolution in alkaline medium. Electrochim. Acta. 47, 3873–3879 (2002).  https://doi.org/10.1016/S0013-4686(02)00354-7 CrossRefGoogle Scholar
  10. 10.
    Raghasudha, M., Ravinder, D., Veerasomaiah, P., Jadhav, K.M., Hashim, M., Bhatt, P., Meena, S.S.: Electrical resistivity and Mössbauer studies of Cr substituted Co nano ferrites. J. Alloys Compd. 694, 366–374 (2017).  https://doi.org/10.1016/j.jallcom.2016.10.028 CrossRefGoogle Scholar
  11. 11.
    Jauhar, S., Singhal, S., Dhiman, M.: Manganese substituted cobalt ferrites as efficient catalysts for H2O2 assisted degradation of cationic and anionic dyes: their synthesis and characterization. Appl. Catal. A Gen. 486, 210–218 (2014).  https://doi.org/10.1016/j.apcata.2014.08.020 CrossRefGoogle Scholar
  12. 12.
    Bhukal, S., Bansal, S., Singhal, S.: Magnetic Mn substituted cobalt zinc ferrite systems: structural, electrical and magnetic properties and their role in photo-catalytic degradation of methyl orange azo dye. Phys. B Condens. Matter. 445, 48–55 (2014).  https://doi.org/10.1016/j.physb.2014.03.088 ADSCrossRefGoogle Scholar
  13. 13.
    Vader, V.T.: Photocatalytic performance of fine particles of Cr doped magnesium ferrites prepared by sol–gel combustion route. J. Mater. Sci. Mater. Electron. 26, 66–71 (2015).  https://doi.org/10.1007/s10854-014-2363-7 CrossRefGoogle Scholar
  14. 14.
    Goyal, A., Bansal, S., Kumar, V., Singh, J., Singhal, S.: Mn substituted cobalt ferrites (CoMnxFe2-xO4(x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0)): as magnetically separable heterogeneous nanocatalyst for the reduction of nitrophenols. Appl. Surf. Sci. 324, 877–889 (2015).  https://doi.org/10.1016/j.apsusc.2014.11.065 ADSCrossRefGoogle Scholar
  15. 15.
    Liu, P., He, H., Wei, G., Liang, X., Qi, F., Tan, F., Tan, W., Zhu, J., Zhu, R.: Effect of Mn substitution on the promoted formaldehyde oxidation over spinel ferrite: catalyst characterization, performance and reaction mechanism. Appl. Catal. B Environ. 182, 476–484 (2016).  https://doi.org/10.1016/j.apcatb.2015.09.055 CrossRefGoogle Scholar
  16. 16.
    Fareghi-Alamdari, R., Zekri, N., Mansouri, F.: Enhancement of catalytic activity in the synthesis of 2-amino-4H-chromene derivatives using both copper- and cobalt-incorporated magnetic ferrite nanoparticles. Res. Chem. Intermed. 43, 6537–6551 (2017).  https://doi.org/10.1007/s11164-017-3003-7 CrossRefGoogle Scholar
  17. 17.
    Ghadari, R., Namazi, H., Aghazadeh, M.: Synthesis of graphene oxide supported copper–cobalt ferrite material functionalized by arginine amino acid as a new high-performance catalyst. Appl. Organomet. Chem. 32, 1–10 (2018).  https://doi.org/10.1002/aoc.3965 CrossRefGoogle Scholar
  18. 18.
    Dutta, M.M., Phukan, P.: Cu-doped CoFe2O4 nanoparticles as magnetically recoverable catalyst for C–N cross-coupling reaction. Catal. Commun. 109, 38–42 (2018).  https://doi.org/10.1016/j.catcom.2018.02.014 CrossRefGoogle Scholar
  19. 19.
    Waldron, R.: Infrared spectra of ferrites. Phys. Rev. 99, 1727–1735 (1955).  https://doi.org/10.1103/PhysRev.99.1727 ADSCrossRefGoogle Scholar
  20. 20.
    Chandramohan, P., Srinivasan, M.P., Velmurugan, S., Narasimhan, S.V.: Cation distribution and particle size effect on Raman spectrum of CoFe2O4. J. Solid State Chem. 184, 89–96 (2011).  https://doi.org/10.1016/j.jssc.2010.10.019 ADSCrossRefGoogle Scholar
  21. 21.
    He, Q., Rui, K., Chen, C., Yang, J., Wen, Z.: Interconnected CoFe2O4−polypyrrole nanotubes as anode materials for high performance sodium ion batteries. ACS Appl. Mater. Interfaces. 9, 36927–36935 (2017).  https://doi.org/10.1021/acsami.7b12503 CrossRefGoogle Scholar
  22. 22.
    Zhang, W., Quan, B., Lee, C., Park, S.K., Li, X., Choi, E., Diao, G., Piao, Y.: One-step facile solvothermal synthesis of copper ferrite-graphene composite as a high-performance supercapacitor material. ACS Appl. Mater. Interfaces. 7, 2404–2414 (2015).  https://doi.org/10.1021/am507014w CrossRefGoogle Scholar
  23. 23.
    Zhang, K., Li, J., Wu, F., Sun, M., Xia, Y., Xie, A.: Sandwich CoFe2O4/RGO/CoFe2O4 nanostructures for high-performance electromagnetic absorption. ACS Appl. Nano Mater. 2, 315–324 (2018).  https://doi.org/10.1021/acsanm.8b01927 CrossRefGoogle Scholar
  24. 24.
    Gu, Z., Xiang, X., Fan, G., Li, F.: Facile synthesis and characterization of cobalt ferrite nanocrystals via a simple reduction-oxidation route. J. Phys. Chem. C. 112, 18459–18466 (2008).  https://doi.org/10.1021/jp806682q CrossRefGoogle Scholar
  25. 25.
    Bumajdad, A., Al-Ghareeb, S., Madkour, M., Al Sagheer, F.: Non-noble, efficient catalyst of unsupported α-Cr2O3 nanoparticles for low temperature CO oxidation. Sci. Rep. 7(2–10), 14788 (2017).  https://doi.org/10.1038/s41598-017-14779-x ADSCrossRefGoogle Scholar
  26. 26.
    Naik, M.Z., Salker, A.V.: Tailoring the super-paramagnetic nature of MgFe2O4 nanoparticles by In3+ incorporation. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 211, 37–44 (2016).  https://doi.org/10.1016/j.mseb.2016.05.019 CrossRefGoogle Scholar
  27. 27.
    Dobson, D.C., Linnett, J.W., Rahman, M.M.: Mössbauer studies of the charge transfer process in the system ZnxFe3-xO4. J. Phys. Chem. Solids. 31, 2727–2733 (1970).  https://doi.org/10.1016/0022-3697(70)90270-2 ADSCrossRefGoogle Scholar
  28. 28.
    Panda, R.K., Muduli, R., Jayarao, G., Sanyal, D., Behera, D.: Effect of Cr3+ substitution on electric and magnetic properties of cobalt ferrite nanoparticles. J. Alloys Compd. 669, 19–28 (2016).  https://doi.org/10.1016/j.jallcom.2016.01.256 CrossRefGoogle Scholar
  29. 29.
    Krieble, K., Lo, C.C.H., Melikhov, Y., Snyder, J.E.: Investigation of Cr substitution in co ferrite (CoCrxFe2-xO4) using Mossbauer spectroscopy. J. Appl. Phys. 99(97–100), 08M912 (2006).  https://doi.org/10.1063/1.2167051 CrossRefGoogle Scholar
  30. 30.
    Jadoun, P., Sharma, J., Kumar, S., Dolia, S.N., Bhatnagar, D., Saxena, V.K.: Structural and magnetic behavior of nanocrystalline Cr doped Co-Mg ferrite. Ceram. Int. 44, 6747–6753 (2018).  https://doi.org/10.1016/j.ceramint.2018.01.091 CrossRefGoogle Scholar
  31. 31.
    Sijo, A.K.: Magnetic and structural properties of CoCrxFe2-xO4 spinels prepared by solution self combustion method. Ceram. Int. 43, 2288–2290 (2016).  https://doi.org/10.1016/j.ceramint.2016.11.010 CrossRefGoogle Scholar
  32. 32.
    Kumar, L., Kumar, P., Kuncser, V., Greculeasa, S., Sahoo, B., Kar, M.: Strain induced magnetism and superexchange interaction in Cr substituted nanocrystalline cobalt ferrite. Mater. Chem. Phys. 211, 54–64 (2018).  https://doi.org/10.1016/j.matchemphys.2018.02.008 CrossRefGoogle Scholar
  33. 33.
    Vadivel, M., Babu, R.R., Sethuraman, K., Ramamurthi, K., Arivanandhan, M.: Synthesis , structural , dielectric , magnetic and optical properties of Cr substituted CoFe2O4 nanoparticles by co-precipitation method. J. Magn. Magn. Mater. 362, 122–129 (2014).  https://doi.org/10.1016/j.jmmm.2014.03.016 ADSCrossRefGoogle Scholar
  34. 34.
    Li, L.Z., Tu, X.Q., Wang, R., Peng, L.: Structural and magnetic properties of Cr-substituted NiZnCo ferrite nanopowders. J. Magn. Magn. Mater. 381, 328–331 (2015).  https://doi.org/10.1016/j.jmmm.2015.01.020 ADSCrossRefGoogle Scholar
  35. 35.
    Alone, S.T., Shirsath, S.E., Kadam, R.H., Jadhav, K.M.: Chemical synthesis, structural and magnetic properties of nano-structured Co-Zn-Fe-Cr ferrite. J. Alloys Compd. 509, 5055–5060 (2011).  https://doi.org/10.1016/j.jallcom.2011.02.006 CrossRefGoogle Scholar
  36. 36.
    Naik, S.R., Salker, A.V.: Change in the magnetostructural properties of rare earth doped cobalt ferrites relative to the magnetic anisotropy. J. Mater. Chem. 22, 2740–2750 (2012).  https://doi.org/10.1039/C2JM15228B CrossRefGoogle Scholar
  37. 37.
    Gajbhiye, N.S., Prasad, S., Balaji, G.: Experimental study of Hopkinson effect in single domain CoFe2O4 particles. IEEE Trans. Magn. 35, 2155–2161 (1999).  https://doi.org/10.1109/20.774187 ADSCrossRefGoogle Scholar
  38. 38.
    Pandya, P.B., Joshi, H.H., Kulkarni, R.G.: Bulk magnetic properties of Co-Zn ferrites prepared by the co-precipitation method. J. Mater. Sci. 26, 5509–5512 (1991).  https://doi.org/10.1007/BF02403950 ADSCrossRefGoogle Scholar
  39. 39.
    Shinde, T.J., Gadkari, A.B., Vasambekar, P.N.: Magnetic properties and cation distribution study of nanocrystalline Ni–Zn ferrites. J. Magn. Magn. Mater. 333, 152–155 (2013).  https://doi.org/10.1016/j.jmmm.2012.12.049 ADSCrossRefGoogle Scholar
  40. 40.
    Gabal, M.A., Al Angari, Y.M.: Low-temperature synthesis of nanocrystalline NiCuZn ferrite and the effect of Cr substitution on its electrical properties. J. Magn. Magn. Mater. 322, 3159–3165 (2010).  https://doi.org/10.1016/j.jmmm.2010.05.054 ADSCrossRefGoogle Scholar
  41. 41.
    Patange, S.M., Shirsath, S.E., Toksha, B.G., Jadhav, S.S., Jadhav, K.M.: Electrical and magnetic properties of Cr3+ substituted nanocrystalline nickel ferrite. J. Appl. Phys. 106, 023914 (2009).  https://doi.org/10.1063/1.3176504 ADSCrossRefGoogle Scholar
  42. 42.
    Verwey, E.J.W., Haayman, P.W.: Electronic conductivity and transition point of magnetite (“Fe3O4”). Physica. 8, 979–987 (1941).  https://doi.org/10.1016/S0031-8914(41)80005-6 ADSCrossRefGoogle Scholar
  43. 43.
    Kumari, N., Kumar, V., Singh, S.K.: Effect of Cr3+ substitution on properties of nano-ZnFe2O4. J. Alloys Compd. 622, 628–634 (2015).  https://doi.org/10.1016/j.jallcom.2014.10.083 CrossRefGoogle Scholar
  44. 44.
    Verma, A., Thakur, O.P., Prakash, C., Goel, T.C., Mendiratta, R.G.: Temperature dependence of electrical properties of nickel–zinc ferrites processed by the citrate precursor technique. Mater. Sci. Eng. B. 116, 1–6 (2005).  https://doi.org/10.1016/j.mseb.2004.08.011 CrossRefGoogle Scholar
  45. 45.
    Maxwell, J.: Electricity and magnetism. Oxford Univ. Press, London (1973)Google Scholar
  46. 46.
    Koops, C.G.: On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 83, 121–124 (1951).  https://doi.org/10.1103/PhysRev.83.121 ADSCrossRefGoogle Scholar
  47. 47.
    Kambale, R.C., Shaikh, P.A., Bhosale, C.H., Rajpure, K.Y., Kolekar, Y.D.: The effect of Mn substitution on the magnetic and dielectric properties of cobalt ferrite synthesized by an autocombustion route. Smart Mater. Struct. 18, 115028 (2009).  https://doi.org/10.1088/0964-1726/18/11/115028 ADSCrossRefGoogle Scholar
  48. 48.
    Maisnam, M., Phanjoubam, S., Sarma, H.N.K., Devi, L.R., Thakur, O.P., Prakash, C.: Dielectric properties of Ni2+ and Mn3+ substituted li-ferrite prepared by microwave sintering technique. Mod. Phys. Lett. B. 21, 497–503 (2007).  https://doi.org/10.1142/S0217984907012827 ADSCrossRefGoogle Scholar
  49. 49.
    Lakshmi, M., Kumar, K.V., Thyagarajan, K.: Study of the dielectric behaviour of Cr-doped zinc nano ferrites synthesized by sol-gel method. Adv. Mater. Phys. Chem. 6, 141–148 (2016).  https://doi.org/10.4236/ampc.2016.66015 CrossRefGoogle Scholar
  50. 50.
    Hashim, M., Raghasudha, M., Shah, J., Shirsath, S.E., Ravinder, D., Kumar, S., Meena, S.S., Bhatt, P., Alimuddin, Kumar, R., Kotnala, R.K.: High temperature dielectric studies of indium-substituted NiCuZn nanoferrites. J. Phys. Chem. Solids. 112, 29–36 (2018).  https://doi.org/10.1016/j.jpcs.2017.08.022 ADSCrossRefGoogle Scholar
  51. 51.
    Rahman, M.T., Vargas, M., Ramana, C.V.: Structural characteristics, electrical conduction and dielectric properties of gadolinium substituted cobalt ferrite. J. Alloys Compd. 617, 547–562 (2014).  https://doi.org/10.1016/j.jallcom.2014.07.182 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryGoa UniversityTaleigãoIndia

Personalised recommendations