Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 32, Issue 12, pp 3837–3844 | Cite as

Sonochemical Synthesis of CoFe2-xNdxO4 Nanoparticles: Structural, Optical, and Magnetic Investigation

  • M. A. Almessiere
  • Y. Slimani
  • A. Demir Korkmaz
  • M. Sertkol
  • A. BaykalEmail author
  • I. Ercan
  • B. Özçelik
Original Paper

Abstract

This investigation deals with CoFe2-xNdxO4 (x ≤ 0.2) nanoparticles (NPs) fabricated by sonochemically. The purity of all products was verified via X-ray powder diffraction. The crystallite size of the samples was calculated as less 12 nm. The spectral analyses also confirmed the presence of spinel ferrites. Both morphology and chemical purity of the spinel ferrite systems were confirmed by SEM, EDX, and elemental mapping analyses. The analyses of magnetization versus applied magnetic field, M(H), were performed. The following magnetic parameters like saturation magnetization Ms, squareness ratio (SQR = Mr / Ms), magnetic moment nB, coercivity Hc, and remanence Mr have been evaluated. The M(H) curves revealed the soft ferromagnetic nature for all CoFe2-xNdxO4 NPs. It is showed that the Nd3+ substitutions significantly affect the magnetization data. A decreasing trend in the Hc, Ms, nB, and Mr values was detected with Nd3+ substitution.

Keywords

Rare earth Magnetic nanomaterials Spinel ferrites Magnetic properties Optical properties 

Notes

Funding Information

The study is supported by the Institute for Research and Medical Consultations (project application no. 2018-IRMC-S-2) of Imam Abdulrahman Bin Faisal University (IAU, Saudi Arabia).

References

  1. 1.
    Lenin, N., Sakthipandi, K., Kanna, R.R., Rajesh, J.: Effect of neodymium ion on the structural, electrical and magnetic properties of nanocrystalline nickel ferrite. Ceram. Int. 44, 11562–11569 (2018)CrossRefGoogle Scholar
  2. 2.
    Rezlescu, E., Rezlescu, N., Pasnicu, C., Craus, M.L., Popa, D.P.: The influence of additives on the properties of Ni-Zn ferrite used in magnetic heads. J. Magn. Magn. Mater. 117, 448–454 (1992)ADSCrossRefGoogle Scholar
  3. 3.
    Rezlescu, N., Rezlescu, L., Popa, P.D., Rezlescu, E.: Influence of additives on the properties of a Ni–Zn ferrite with low Curie point. J. Magn. Magn. Mater. 215, 194–196 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    Javed, H., Iqbal, F., Agboola, P.O., Khanb, M.A., Warsi, M.F., Shakiret, I.: Ceram. Int. 45, 11125 (2019).  https://doi.org/10.1016/j.ceramint.2019.02.176 CrossRefGoogle Scholar
  5. 5.
    Rezlescu, N., Rezlescu, E., Pasnicu, C., Craus, M.L.: Effects of the rare-earth ions on some properties of a nickel-zinc ferrite. J. Phys. Condens. Matter. 6, 5707–5716 (1994)ADSCrossRefGoogle Scholar
  6. 6.
    Munir, A., Ahmed, F., Saqib, M., Anis-ur-Rehman, M.: Partial correlation of electrical and magnetic properties of Nd substituted Ni–Zn nanoferrites. J. Magn. Magn. Mater. 397, 188–197 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    Eltabey, M.M., Agami, W.R., Mohsen, H.T.: Improvement of the magnetic properties for Mn–Ni–Zn ferrites by rare earth Nd3+ ion substitution. J. Adv. Res. 5, 601–605 (2014)CrossRefGoogle Scholar
  8. 8.
    Shinde, T.J., Gadkari, A.B., Vasambekar, P.N.: Effect of Nd3+ substitution on structural and electrical properties of nanocrystalline zinc ferrite. J. Magn. Magn. Mater. 322, 2777–2781 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    Naik, P.P., Tangsali, R.B.: Enduring effect of rare earth (Nd3+) doping and radiation on electrical properties of nanoparticle manganese zinc ferrite. J. Alloys Compd. 723, 266–275 (2017)CrossRefGoogle Scholar
  10. 10.
    Mounkachia, O., Lamouri, R., Abraime, B., Ez-Zahraouy, H., El Kenz, A., Hamedoun, M., Benyoussef, A.: Exploring the magnetic and structural properties of Nd-doped cobalt nanoferrite for permanent magnet applications. Ceram. Int. 43, 14401–14404 (2017)CrossRefGoogle Scholar
  11. 11.
    Kokare, M.K., Jadhav, N.A., Kumar, Y., Jadhav, K.M., Rathod, S.M.: Effect of Nd3+ doping on structural and magnetic properties of Ni0.5Co0.5Fe2O4 nanocrystalline ferrites synthesized by sol-gel auto combustion method. J. Alloys Compd. 748, 1053–1061 (2018)CrossRefGoogle Scholar
  12. 12.
    Yadav, R.S., Havlica, J., Masilko, J., Kalina, L., Wasserbauer, J., Hajdúchová, M., Enev, V., Kuřitka, I., Kožákova, Z.: Impact of Nd3+ in CoFe2O4 spinel ferrite nanoparticles on cation distribution, structural and magnetic properties. J. Magn. Magn. Mater. 399, 109–117 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    Yadav, R.S., Mishra, P., Pandey, A.C.: Growth mechanism and optical property of ZnO nanoparticles synthesized by sonochemical method. Ultrason. Sonochem. 15, 863–868 (2008)CrossRefGoogle Scholar
  14. 14.
    Mishra, P., Yadav, R.S., Pandey, A.C.: Growth mechanism and photoluminescence property of flower-like ZnO nanostructures synthesized by starch-assisted sonochemical method. Ultrason. Sonochem. 17, 560–565 (2010)CrossRefGoogle Scholar
  15. 15.
    Suslick, K.S.: Ultrasound: its chemical, physical and biological effects. VCH Verlagsgesellschaft, Weinheim (1988)Google Scholar
  16. 16.
    Suslick, K.S., Price, G.J.: Application of ultrasound to materials chemistry. Annu. Rev. Mater. Sci. 29, 295–326 (1999)ADSCrossRefGoogle Scholar
  17. 17.
    Dahl, J.A., Maddux, B.L., Hutchison, J.E.: Toward greener nanosynthesis. Chem. Rev. 107, 2228–2269 (2007)CrossRefGoogle Scholar
  18. 18.
    Naik, P.P., Tangsali, R.B., Meen, S.S., Yusuf, S.M.: Influence of rare earth (Nd+3) doping on structural and magnetic properties of nanocrystalline manganese-zinc ferrite. Mater. Chem. Phys. 191, 215–224 (2017)CrossRefGoogle Scholar
  19. 19.
    Thakur, P., Sharma, R., Kumar, M., Katyal, S.C., Barman, P.B., Sharma, V., Sharma, P.: Structural, morphological, magnetic and optical study of co-precipitated Nd3+ doped Mn-Zn ferrite nanoparticles. J. Mang. Magn. Mater. 479, 317–325 (2019)ADSCrossRefGoogle Scholar
  20. 20.
    Nikumbh, A.K., Pawar, R.A., Nighot, D.V., Gugale, G.S., Sangale, M.D., Khanvilkar, M.B., Nagawade, A.V.: Structural, electrical, magnetic and dielectric properties of rare-earth substituted cobalt ferrites nanoparticles synthesized by the co-precipitation method. J. Magn. Magn. Mater. 355, 201–209 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    Persis Amaliya, A., Anand, S., Pauline, S.: Investigation on structural, electrical and magnetic properties of titanium substituted cobalt ferrite nanocrystallites. J. Magn. Magn. Mater. 467, 14–28 (2018)ADSCrossRefGoogle Scholar
  22. 22.
    Stoner, E.C., Wohlfarth, E.P.: A mechanism of magnetic hysteresis in heteregeneous alloys. Phil. Trans. R. Soc. A. 240(826), 599–642 (1948)ADSCrossRefGoogle Scholar
  23. 23.
    Almessiere, M.A., Slimani, Y., Baykal, A.: Exchange spring magnetic behavior of Sr0.3Ba0.4Pb0.3Fe12O19/(CuFe2O4)x nanocomposites fabricated by a one-pot citrate sol-gel combustion method. J. Alloys Compd. 762, 389–397 (2018)CrossRefGoogle Scholar
  24. 24.
    Duong, G.V., Hanh, N., Linh, D.V., Groessinger, R., Weinberger, P., Schafler, E., Zehetbauer, M.: Monodispersed nanocrystalline Co1–xZnxFe2O4 particles by forced hydrolysis: synthesis and characterization. J. Magn. Magn. Mater. 311, 46–50 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    Slimani, Y., Almessiere, M.A., Nawaz, M., Baykal, A., Akhtar, S., Ercan, I., Belenli, I.: Effect of bimetallic (Ca, Mg) substitution on magneto-optical properties of NiFe2O4 nanoparticles. Ceram. Int. 45, 6021–6029 (2019)CrossRefGoogle Scholar
  26. 26.
    Md Amir, H., Gungunes, Y., Slimani, N., Tashkandi, H.S., El Sayed, F., Aldakheel, M., Sertkol, H., Sozeri, A., Manikandan, I., Ercan, A.B.: Mossbauer studies and magnetic properties of cubic CuFe2O4 nanoparticles. J. Supercond. Nov. Magn. 32, 557 (2018).  https://doi.org/10.1007/s10948-018-4733-5 CrossRefGoogle Scholar
  27. 27.
    Baykal, A., Esir, S., Demir, A., Güner, S.: Magnetic and optical properties of Cu1-xZnxFe2O4 nanoparticles dispersed in a silica matrix by a sol-gel auto-combustion method. Ceram. Int. 41, 231–239 (2015)CrossRefGoogle Scholar
  28. 28.
    Almessiere, M.A., Demir Korkmaz, A., Slimani, Y., Nawaz, M., Ali, S., Baykal, A.: Magneto-optical properties of rare earth metals substituted Co-Zn spinel nanoferrites. Ceram. Int. 45, 3449–3458 (2019)CrossRefGoogle Scholar
  29. 29.
    Luo, G., Zhou, W., Li, J., Zhou, Z., Jiang, G., Li, W., Tang, S., Du, Y.: The influence of Nd3+ ions doping on structural, dielectric and magnetic properties of Ni–Zn ferrites. J. Mater. Sci. Mater. Electron. 28, 7259–7263 (2017)CrossRefGoogle Scholar
  30. 30.
    Lu, A.H., Salabas, E.L., Schüth, F.: Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 46, 1222 (2007)CrossRefGoogle Scholar
  31. 31.
    Xia, A.L., Zuo, C.H., Zhang, L.J., Cao, C.X., Deng, Y., Xu, W., Xie, M.F., Ran, S.L., Jin, C.G., Liu, X.G.: Magnetic properties, exchange coupling and novel stripe domains in bulk SrFe12O19/(Ni,Zn)Fe2O4 composites. J. Phys. D. Appl. Phys. 47, 415004 (2014)CrossRefGoogle Scholar
  32. 32.
    Slimani, Y., Güngüneş, H., Nawaz, M., Manikandan, A., El Sayed, H.S., Almessiere, M.A., Sözeri, H., Shirsath, S.E., Ercan, I., Baykal, A.: Magneto-optical and microstructural properties of spinel cubic copper ferrites with Li-Al co-substitution. Ceram. Int. 44, 14242–14250 (2018)CrossRefGoogle Scholar
  33. 33.
    Almessiere, M.A., Slimani, Y., Baykal, A.: Structural and magnetic properties of Ce doped strontium hexaferrite. Ceram. Int. 44, 9000 (2018)CrossRefGoogle Scholar
  34. 34.
    Pervaiz, E., Gul, I.: Influence of rare earth (Gd3+) on structural, gigahertz dielectric and magnetic studies of cobalt ferrite. J. Phys. Conf. 439, 012015 (2013)CrossRefGoogle Scholar
  35. 35.
    Mirkazemi, S.M., Alamolhoda, S., Ghiami, Z.: Microstructure and magnetic properties of SrFe12O19 nano-sized powders prepared by sol-gel auto-combustion method with CTAB surfactant. J. Supercond. Nov. Magn. 28, 1551–1558 (2015)CrossRefGoogle Scholar
  36. 36.
    Li, X., Sun, R., Luo, B.Y., Zhang, A.J., Xia, A.L., Jin, C.G.: Synthesis and magnetic properties of manganese–zinc ferrite nanoparticles obtained via a hydrothermal method. J. Mater. Sci. Mater. Electron. 28, 12268–12272 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • M. A. Almessiere
    • 1
    • 2
  • Y. Slimani
    • 2
  • A. Demir Korkmaz
    • 3
  • M. Sertkol
    • 4
  • A. Baykal
    • 5
    Email author
  • I. Ercan
    • 2
  • B. Özçelik
    • 6
  1. 1.Department of Physics, College of ScienceImam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia
  2. 2.Department of Biophysics, Institute for Research and Medical Consultations (IRMC)Imam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia
  3. 3.Department of ChemistryIstanbul Medeniyet UniversityIstanbulTurkey
  4. 4.Deanship of Preparatory YearImam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia
  5. 5.Department of Nanomedicine Research, Institute for Research and Medical Consultations (IRMC)Imam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia
  6. 6.Department of Physics, Faculty of Science and LettersCukurova UniversityAdanaTurkey

Personalised recommendations