Journal of Superconductivity and Novel Magnetism

, Volume 32, Issue 12, pp 3947–3955 | Cite as

Ferromagnetism in Nanocrystalline SrCo0.9Mn0.1O3-δ: a Structural, Magnetic and Electrical Transport Study

  • Amit Kumar
  • Meenakshi
  • Rabindra Nath MahatoEmail author
Original Paper


The physical properties of the nanocrystalline SrCo0.9Mn0.1O3-δ sample prepared by citrate-gel method have been investigated. The sample crystallizes in rhombohedral crystal symmetry with space group R32/155. Temperature dependence of zero field cooled (ZFC) and field cooled (FC) magnetization exhibit paramagnetic to ferromagnetic (PM-FM) transition at 164 K. The high temperature and low temperature synthesized phases show different magnetic ground state. The deviations in magnetization data around magnetic ordering temperature are also studied using the Langevin function. This attributed to the presence of intrinsic superparamagnetic (SPM) nanocluster contribution. Temperature dependence of average cluster moment is calculated and found to be maxima near transition temperature. The temperature dependence electrical resistivity of the samples shows semiconducting-like behavior for the studied range of temperature. The conduction mechanism of the samples has been analyzed using Mott’s variable range hopping model to calculate the density of states in the vicinity of Fermi energy (N (EF)) and hopping distance (Rh). All electrical parameters vary systematically and are in good agreement with other reported semiconducting oxides.


Nanocrystalline Cobaltite Magnetism Superparamagnetic cluster Electrical properties 



Authors acknowledge Advanced Instrumentation Research Facility (AIRF-JNU), New Delhi for magnetic measurements and SEM imaging. All authors sincerely thank Saroj Jha for the magnetic data collection.

Funding information

This project received funding from UPE II, UGC start-up grants, and DST purse.


  1. 1.
    Munoz, A., de la Calle, C., Alsono, J.A., Botta, P.M., Pardo, V., Baldomir, D., Rivas, J.: Crystallographic and magnetic structure of SrCoO2.5 brownmillerite: Neutron study coupled with band-structure calculations. Phys. Revs. B. 054404, 78 (2008)Google Scholar
  2. 2.
    Mentre, O., Lordulescu, M., Huve, M., Kabbour, H., Renaut, N., Minaud, S.D., Colis, S., Roussel, P.: BaCoO2.22: the most oxygen-deficient certified cubic perovskite. Dalton Trans. 44, 10728 (2015)CrossRefGoogle Scholar
  3. 3.
    Gaoke, Z., Ying, L., Xia, Y., Yanping, W., Shixi, O., Hangxing, L.: Comparison of synthesis methods, crystal structure and characterization of strontium cobaltite powders. Mater. Chem. Phys. 99, 88–95 (2006)CrossRefGoogle Scholar
  4. 4.
    Kumar, A., Meenakshi, Mahato, R.N.: Effect of annealing temperature on structure and magnetocaloric properties of nanocrystalline BaCo0.9Mn0.1O3-δ. J. Alloys Compd. 723, 675–445 (2017)CrossRefGoogle Scholar
  5. 5.
    Balamurugan, S.: Impact of high pressure and high temperature on annealed oxygen-deficient CoSrO3−δ perovskites: structural and magnetization studies. J. Supercond. Nov. Magn. 23, 225–231 (2010)CrossRefGoogle Scholar
  6. 6.
    Glamazda, A., Choi, K.Y., Lemmens, P., Choi, W.S., Jeen, H.: Structural instability of the CoO4 tetrahedral chain in SrCoO3−δ thin films. J. Appl. Phys. 118, 085313 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    Bezdicka, P., Wattiaux, M.J.C., Grenier, J.C., Pouchard, M., Hagenmuller, P.: Preparation and characterization of fully stoichiometric SrCoO3 by electrochemical oxidation. Z. Anorg. Allg. Chem. 619, 7 (1993)CrossRefGoogle Scholar
  8. 8.
    Le Toquin, R., Paulus, W., Cousson, A., Prestipino, C., Lamberti, C.: Time-Resolved in Situ Studies of Oxygen Intercalation into SrCoO2.5, Performed by Neutron Diffraction and X-ray Absorption Spectroscopy. J. Am. Chem. Soc. 128(40), 13161 (2006)CrossRefGoogle Scholar
  9. 9.
    Grenier, J.C., Fourn’es, L., Pouchard, M., Hagenmuller, P.: A mössbauer resonance investigation of 57Fe doped Sr2Co2O5. Mater. Res. Bull. 21, 441–449 (1986)CrossRefGoogle Scholar
  10. 10.
    Goodenough, J.B., Loeb, A.L.: Theory of ionic ordering, crystal distortion, and magnetic exchange due to covalent forces in Spinels. Phys. Rev. 98(2), 391 (1955)ADSCrossRefGoogle Scholar
  11. 11.
    Goodenough, J.B.: Theory of the role of covalence in the perovskite-type Manganites [La, M (II)]MnO3. Phys. Rev. 100(2), 564 (1955)ADSCrossRefGoogle Scholar
  12. 12.
    Kanamori, J.: Superexchange interaction and symmetry properties of electron orbitals. J. Phys. Chem. Solids. 10, 87 (1959)ADSCrossRefGoogle Scholar
  13. 13.
    Motohashi, T., Caignaert, V., Pralong, V., Hervieu, M., Maignan, A., Raveau, B.: Competition between ferromagnetism and spin glass: The key for large magnetoresistance in oxygen-deficient perovskites SrCo1-xMxO3−δ (M=Nb,Ru). Phys. Rev. B. 71, 214424 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    Munoz, A., Alsono, J.A., Martinez-Lope, M.J., de la Calle, C., Fernandez-Diaz, M.T.: High pressure synthesis, crystal, magnetic structure and magnetotransport of SrFe0.5Co0.5O3−δ. J. Solid State Chem. 179, 3365–3370 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    Malo, S., Maignan, A.: Structural, Magnetic, and Transport Properties of the SrTi1-xCoxO3-δ Perovskite (0 ≤ x ≤ 0.9). Inorg. Chem. 43, 8169–8175 (2004)CrossRefGoogle Scholar
  16. 16.
    Yoshiasa, A., Inoue, Y., Kanamaru, F., Koto, K.: Local structure and spin state of Co4+ ions in the perovskite-type SrCo1- xMnxO3 solid-solution. J. Solid State Chem. 86, 75–81 (1990)ADSCrossRefGoogle Scholar
  17. 17.
    Maignan, A., Pelloquin, D., Fahaut, D., Caignaert, V.: Diluted magnetic interactions in an oxygen-deficient perovskite cobaltite: magnetoresistance in the series SrCo1-xScxO3-δ ( 0<x<0.5). J. Solid State Chem. 177, 3693 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    Maignan, A., Hebert, S., Nguyen, N., Pralong, V., Pelloquin, D., Caignaert, V.: The SrCo1−yMnyO3−δ oxygen deficient perovskite: competition between ferro and antiferromagnetismJ. Magn. Magn. Mater. 303, 197–203 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    Kumar, A., Meenakshi, Mahato, R.N.: Structural, magnetic and electrical transport properties of nanocrystalline SrCo0.5Mn0.5O3-δ. IEEE Trans. Mag. 54, 2900306 (2018)Google Scholar
  20. 20.
    Shinoda, R., Iwase, A., Matsui, T.: Magnetic and structural properties of Ba (Co1−xMnx)O3 using synchrotron x-ray spectroscopy. J. Appl. Phys. 116, 243901 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    Inoue, T., Matsui, T., Fujimura, N., Tsuda, H., Morri, K.: Ferromagnetic and dielectric behavior of Mn-doped BaCoO3. IEEE Trans. Magn. 41(10), 3496 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    Shinoda, R., Itou, M., Sakurai, Y., Yamamoto, H., Hirao, N., Baba, Y., Iwase, A., Matsui, T.: Magnetic Compton scattering studies of magneto-dielectric Ba (Co0.85Mn0.15)O3−δ. J. Appl. Phys. 113, 17E307 (2013)CrossRefGoogle Scholar
  23. 23.
    Kumar, A., Chaudhary, S., Meher Abhinav, E., Mahato, R.N.: Impact of crystal stacking sequence on electrical transport and dielectric properties of the nanocrystalline BaCo0.9Mn0.1O3-δ. J. Alloys Compd. 786, 356–367 (2019)CrossRefGoogle Scholar
  24. 24.
    Harrison, W.T.A., Hedwood, S.L., Jacobson, A.J.: A powder neutron diffraction determination of the structure of Sr6Co5O15, formerly described as the low-temperature hexagonal form of SrCoO3–x. J. Chem. Soc. Chem. Commun. 19, 1953–1954 (1995)CrossRefGoogle Scholar
  25. 25.
    Camp’a, J.A., Guti’errez-Puebla, E., Monge, M.A., Rasines, I., Ruiz-Valero, C.: Nickel Supermixed Valence in Stoichiometric BaNi0.83O2.5. J. Solid State Chem. 108(2), 230–235 (1994)ADSCrossRefGoogle Scholar
  26. 26.
    Mott, N.F.: Metal Insulator Transitions. Taylor & Francis, London (1990)CrossRefGoogle Scholar
  27. 27.
    Mott, N.F., Davis, E.A.: Electronics Process in Non-Crystalline Materials. Clarendon, Oxford (1971)Google Scholar
  28. 28.
    Rietveld, H.M.: A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65–71 (1969)CrossRefGoogle Scholar
  29. 29.
    de la Calle, C., Alonso, J.A., Fernandez-Diaz, M.T.: Polymorphism of Ba1–xSrxCoO3–δ (0 ≤ x ≤ 1) Perovskites: A Thermal and Structural Study by Neutron Diffraction. Z. Naturforsch. 63b, 647–654 (2008)CrossRefGoogle Scholar
  30. 30.
    Liu, D., Li, D., Yang, D.: Size-dependent magnetic properties of branchlike nickel oxide nanocrystals. AIP Adv. 7, 015028 (2017)ADSCrossRefGoogle Scholar
  31. 31.
    Takano, K., Kodama, R.H., Berkowitz, A.E., Cao, W., Thomas, G.: Interfacial uncompensated antiferromagnetic spins: role in unidirectional anisotropy in polycrystalline Ni81Fe19/CoO bilayers. Phys. Rev. Lett. 79, 1130 (1997)ADSCrossRefGoogle Scholar
  32. 32.
    Proenca, M.P., Sousa, C.T., Pereira, A.M., Tqavares, P.B., Ventura, J., Vazquez, M., Araujo, J.P.: Size and surface effects on the magnetic properties of NiO nanoparticles. Phys. Chem. Chem. Phys. 13, 9561–9567 (2011)CrossRefGoogle Scholar
  33. 33.
    Takeda, Y., Kanno, R., Takada, T., Yamamoto, O., Takano, M., Bando, Y.: Phase relation and oxygen-non-stoichiometry of Perovskite-like Compound SrCoOx (2.29 < x > 2.80). Z. Anorg. Allg. Chem. 259, 540–541 (1986)Google Scholar
  34. 34.
    Rodríguez, J., Gonz’alez-Calbet, J.M.: Rhombohedral Sr2Co2O5: a new A2M2O5 phase. Mater. Res. Bull. 21, 429 (1986)CrossRefGoogle Scholar
  35. 35.
    Das, K., Das, I.: Giant enhancement of magnetocaloric effect at room temperature by the formation of nanoparticle of La0.48Ca0.52MnO3 compound. J. Appl. Phys. 119, 093903 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    Dutta, P., Dey, P., Nath, T.K.: Effect of nanometric grain size on room temperature magnetoimpedance, magnetoresistance, and magnetic properties of La0.7Sr0.3MnO3 nanoparticles. J. Appl. Phys. 102, 073906 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    Das, K., Das, I.: A comparative study of magnetic training effect in bulk and nanocrystalline La0.46Ca0.54MnO3 compound. J. Appl. Phys. 118, 084302 (2015)ADSCrossRefGoogle Scholar
  38. 38.
    Fan, J.Y., Pi, L., Zhang, L., Tong, W., Ling, L.S., Hong, B., Shi, Y.G., Zhang, W.C., Lu, D., Zhang, Y.H.: Investigation of critical behavior in Pr0.55Sr0.45MnO3 by using the field dependence of magnetic entropy change. Appl. Phys. Lett. 98, 072508 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    Xu, L.S., Fan, J.Y., Shi, Y.G., Zhu, Y., Barner, K., Yang, C.P., Shi, D.N.: Critical behavior and long-range ferromagnetic order in perovskite manganite Nd0.55Sr0.45MnO3. Europhys. Lett. 112, 17005 (2015)ADSCrossRefGoogle Scholar
  40. 40.
    Oesterreicher, H., Parker, F.T.: Magnetic cooling near curie temperatures above 300 K. J. Appl. Phys. 55, 4334 (1984)ADSCrossRefGoogle Scholar
  41. 41.
    Franco, V., Blázquez, J.S., Conde, A.: Field dependence of the magnetocaloric effect in materials with a second order phase transition: a master curve for the magnetic entropy change. Appl. Phys. Lett. 89, 222512 (2006)ADSCrossRefGoogle Scholar
  42. 42.
    Franco, V., Conde, A.: Scaling laws for the magnetocaloric effect in second order phase transitions: from physics to applications for the characterization of materials. Int. J. Refrig. 33, 465 (2010)CrossRefGoogle Scholar
  43. 43.
    Chen, W., Zhong, W., Hou, D.L., Gao, R.W., Feng, W.C., Zhu, M.G., Du, Y.W.: Preparation and magnetocaloric effect of self-doped La0.8−xNa0.2□xMnO3+δ (□ = vacancies) polycrystal. J. Phys. Condens. Matter. 14, 11889 (2002)ADSCrossRefGoogle Scholar
  44. 44.
    Ravi, S., Kar, M.: Study of magneto-resistivity in La1−xAgxMnO3 compounds. Phys. B Condens. Matter. 348, 169–176 (2004)ADSCrossRefGoogle Scholar
  45. 45.
    Khan, W., Naqvi, A.H., Gupta, M., Husain, S., Kumar, R.: Small polaron hopping conduction mechanism in Fe doped LaMnO3. J. Chem. Phys. 135, 054501 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Physical SciencesJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations