Effects of Mg Substitution on the Structural and Magnetic Properties of Ni0.2MgxCo0.8−xFe2O4 Nanoparticle Ferrites

  • Xiqian Zhao
  • Aimin SunEmail author
  • Wei Zhang
  • Yingqiang Han
  • Xiaoguang Pan
Original Paper


Sol-gel auto-combustion is a method of preparing ferrite by combining combustion with chemical gel. In this study, Ni-Mg-Co ferrite powders are prepared by coprecipitation method, and the nanocrystals of Ni0.2MgxCo0.8−xFe2O4 are successfully synthesized. The structure and magnetic properties of undoped and Mg-substituted Ni-Co ferrite nanoparticles are systematically investigated. The methods used to characterize the prepared samples are X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FTIR), and Vibrating sample magnetometry (VSM). The synthesized samples are confirmed by XRD analysis to form a single-phase cubic spinel structure with crystals between 48 and 50 nm. With the increase of Mg ion concentration, the lattice constant decreases. The results of FTIR spectroscopy indicated that a spinel structure was formed. Transmission electron microscopy (TEM) images show spherical cubic microcrystals in the samples. EDX analysis confirms that the synthesized ferrite is pure phase structure, and Mg2+ is successfully replaced. With the increase of Mg2+ ion content, the saturation magnetization and remanent magnetization decreased from 70.16 to 39.77 emu/g and 36.40 to 20.20 emu/g at room temperature, respectively. Meanwhile, the coercivity decreases from 1032.16 to 378.50 Oe by increasing Mg2+ concentration. This also indicates that the Mg-substituted Ni-Co nano-ferrite has a low magnetic of multi-ferric material. The increasing of peak height of dM/dH at Hm indicates that the cubic spinel structure sample has good crystallinity and magnetic stability.


Ni-Mg-Co ferrite Mg-substituted Sol-gel auto-combustion Structural Magnetic properties 



  1. 1.
    Alvarado, S.F., Eib, W., Siegmann, H.C., Remeika, J.P.: Electronic excitations in ferrites. J. Magn. Magn. Mater. 3, 121–128 (1976)ADSCrossRefGoogle Scholar
  2. 2.
    Kulikowski, J.: J. Magn. Magn. Mater. 41, 56 (1984)ADSCrossRefGoogle Scholar
  3. 3.
    Pardavi-Horvath, M.: J. Magn. Magn. Mater. 215, 171 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    Kargar, Z., Asgarian, S.M., Mozaffari, M.: Positron annihilation and magnetic properties studies of copper substituted nickel ferrite nanoparticles. Mozaffari. Nucl. Instrum. Meth. B. 375, 71–78 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    Ati, A.A., Othaman, Z., Samavati, A.: Influence of cobalt on structural and magnetic properties of nickel ferrite nanoparticles. J. Mol. Struct. 1052, 177–182 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    Li, L.Z., Tu, X.Q., Wang, R., Peng, L.: Structural and magnetic properties of Cr-substituted NiZnCo ferrite nanopowders. J. Magn. Magn. Mater. 381, 328–331 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    Chirawatkul, P., Khoonsap, S., Phumying, S., Kaewhan, C., Pinitsoontorn, S., Maensiri, S.: Cation distribution and magnetic properties of CoxMg1−xFe2O4 nanoparticles. J. Alloy. Compd. 697, 249–256 (2017)CrossRefGoogle Scholar
  8. 8.
    Sawatzky, G.A., Van Der Woude, F., Morrish, A.H.: Cation distributions in octahedral and tetrahedral sites of the ferrimagnetic spinel CoFe2O4. J. Appl. Phys. 39, 1204–1205 (1968)ADSCrossRefGoogle Scholar
  9. 9.
    Filippi, M., Agrestini, S., Simonelli, L., Saini, N.L., Bianconi, A., De Negri, S., Saccone, A.: X-ray absorption near edge structure (XANES) microscopy of phase separation in superconducting Mg1−xScxB2. Spectrochim. Acta B. 62, 717–719 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    Ricci, A., Poccia, N., Joseph, B., Innocenti, D., Campi, G., Zozulya, A., Takeya, H.: Direct observation of nanoscale interface phase in the superconducting chalcogenide KxFe2−ySe2 with intrinsic phase separation. Phys. Rev. B. 91, 020503 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    Venkataraju, C., Sathishkumar, G., Sivakumar, K.: Effect of cation distribution on the structural and magnetic properties of nickel substituted nanosized Mn–Zn ferrites prepared by co-precipitation method. J. Magn. Magn. Mater. 322, 230–233 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Mohapatra, S., Rout, S.R., Maiti, S., Maiti, T.K., Panda, A.B.: Monodisperse mesoporous cobalt ferrite nanoparticles: synthesis and application in targeted delivery of antitumor drugs. J. Mater. Chem. 21, 9185 (2011)CrossRefGoogle Scholar
  13. 13.
    Bate, G., Craik, D. J.: Magnetic oxides part 2. Wiley Interscience, New York, 698, (1975)Google Scholar
  14. 14.
    Sharrock, M.P.: Particulate magnetic recording media: a review. IEEE Trans. Magn. 25, 4374–4389 (1989)ADSCrossRefGoogle Scholar
  15. 15.
    Ramos, A.V., Santos, T.S., Miao, G.X., Guittet, M.J., Moussy, J.B., Moodera, J.S.: Influence of oxidation on the spin-filtering properties of CoFe2O4 and the resultant spin polarization. Phys. Rev. B. 78, 180402 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    Abe, M., Gomi, M.: Magneto-optical recording on garnet films. J. Magn. Magn. Mater. 84, 222–228 (1990)ADSCrossRefGoogle Scholar
  17. 17.
    Uday Bhasker, S., Vijaya Kumar, Y., Reddy, R.: Preparation and characterization of cobalt magnesium nano ferrites using auto-combustion method. Adv. Mater. Res. 584, 280–284 (2012)CrossRefGoogle Scholar
  18. 18.
    Ranvah, N., Melikhov, Y., Nlebedim, I.C., Jiles, D.C., Snyder, J.E., Moses, A.J., Williams, P.I.: Temperature dependence of magnetic anisotropy of germanium/cobalt cosubstituted cobalt ferrite. J. Appl. Phys. 105, 07A518 (2009)CrossRefGoogle Scholar
  19. 19.
    Paulsen, J.A., Lo, C.C.H., Snyder, J.E., Ring, A.P., Jones, L.L., Jiles, D.C.: Study of the Curie temperature of cobalt ferrite based composites for stress sensor applications. IEEE Trans. Magn. 39, 3316–3318 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    Srivastava, M., Ojha, A.K., Chaubey, S., Sharma, P.K., Pandey, A.C.: Influence of pH on structural morphology and magnetic properties of ordered phase cobalt doped lithium ferrites nanoparticles synthesized by sol–gel method. Mater. Sci. Eng. B. 175, 14–21 (2010)CrossRefGoogle Scholar
  21. 21.
    Agrestini, S., Metallo, C., Filippi, M., Campi, G., Sanipoli, C., De Negri, S., Bianconi, A.: Sc doping of MgB2: the structural and electronic properties of Mg1−xScxB2. J. Phys. Chem. Solids. 65, 1479–1484 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    Ghafoor, I., Siddiqi, S.A., Atiq, S., Riaz, S., Naseem, S.: Sol–gel synthesis and investigation of structural, electrical and magnetic properties of Pb doped La0.1Bi0.9FeO3 multiferroics. J. Sol-Gel Sci. Technol. 74, 352–356 (2015)CrossRefGoogle Scholar
  23. 23.
    Chandrasekaran, G., Selvanandan, S., Manivannane, K.: J. Mater. Sci. Mater. Electron. 15, 15 (2004)CrossRefGoogle Scholar
  24. 24.
    Anjum, S., Rashid, A., Bashir, F., Riaz, S., Pervaiz, M., Zia, R.: Effect of Cu-doped nickel ferrites on structural, magnetic, and dielectric properties. IEEE Trans. Magn. 50, 1–4 (2014)CrossRefGoogle Scholar
  25. 25.
    Siraj, K., Khaleeq-ur-Rahman, M., Hussain, S.I., Rafique, M.S., Anjum, S.: Effect of deposition temperature on structural, surface, optical and magnetic properties of pulsed laser deposited Al-doped CdO thin films. J. Alloy. Compd. 509, 6756–6762 (2011)CrossRefGoogle Scholar
  26. 26.
    Arulmurugan, R., Jeyadevan, B., Vaidyanathan, G., Sendhilnathan, S.: Effect of zinc substitution on Co–Zn and Mn–Zn ferrite nanoparticles prepared by co-precipitation. J. Magn. Magn. Mater. 288, 470–477 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    Sharma, J., Sharma, N., Parashar, J., Saxena, V.K., Bhatnagar, D., Sharma, K.B.: Dielectric properties of nanocrystalline Co-Mg ferrites. J. Alloy. Compd. 649, 362–367 (2015)CrossRefGoogle Scholar
  28. 28.
    Muthuselvam, I.P., Bhowmik, R.N.: Mechanical alloyed Ho3+ doping in CoFe2O4 spinel ferrite and understanding of magnetic nanodomains. J. Magn. Magn. Mater. 322, 767–776 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    Eltabey, M.M., El-Shokrofy, K.M., Gharbia, S.A.: Enhancement of the magnetic properties of Ni–Cu–Zn ferrites by the non-magnetic Al3+-ions substitution. J. Alloy. Compd. 509, 2473–2477 (2011)CrossRefGoogle Scholar
  30. 30.
    Nakamoto, K.: Parts-A and B. John Wiley & Sons, New York (1997)Google Scholar
  31. 31.
    Bhasker, S.U., Reddy, M.R.: Effect of chromium substitution on structural, magnetic and electrical properties of magneto-ceramic cobalt ferrite nano-particles. J. Sol-Gel Sci. Technol. 73, 396–402 (2015)CrossRefGoogle Scholar
  32. 32.
    Chaudhari, M.V., Shirsath, S.E., Kadam, A.B., Kadam, R.H., Shelke, S.B., Mane, D.R.: Site occupancies of Co–Mg–Cr–Fe ions and their impact on the properties of Co0.5Mg0.5CrxFe2−xO4. J. Alloy. Compd. 552, 443–450 (2013)CrossRefGoogle Scholar
  33. 33.
    Iqbal, M.J., Ashiq, M.N., Hernandez-Gomez, P., Munoz, J.M.: Magnetic, physical and electrical properties of Zr–Ni-substituted co-precipitated strontium hexaferrite nanoparticles. Scripta Mater. 57, 1093–1096 (2007)CrossRefGoogle Scholar
  34. 34.
    Raut, A.V., Barkule, R.S., Shengule, D.R., Jadhav, K.M.: J. Magn. Magn. Mater. 358, 87 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    Bobade, D.H., Rathod, S.M., Mane, M.L.: Sol–gel auto-combustion synthesis, structural and enhanced magnetic properties of Ni2+ substituted nanocrystalline Mg–Zn spinel ferrite. Physica B: Condens. Matter. 407, 3700–3704 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    Néel, L.: Ann. Phys. 3, 137 (1948)CrossRefGoogle Scholar
  37. 37.
    Yafet, Y., Kittel, C.: Antiferromagnetic arrangements in ferrites. Phys. Rev. 87, 290–294 (1952)ADSCrossRefGoogle Scholar
  38. 38.
    Jadhav, S.S., Shirsath, S.E., Patange, S.M., Jadhav, K.M.: Effect of Zn substitution on magnetic properties of nanocrystalline cobalt ferrite. J. Appl. Phys. 108, 093920 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    Shaikh, P.A., Kambale, R.C., Rao, A.V., Kolekar, Y.D.: Effect of Ni doping on structural and magnetic properties of Co1–xNixFe1.9Mn0.1O4. J. Magn.Magn. Mater. 322, 718–726 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    Coey, J.M.D.: Rare Earth Permanent Magnetism. 1, 220 (1996)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Xiqian Zhao
    • 1
  • Aimin Sun
    • 1
    • 2
    Email author
  • Wei Zhang
    • 1
  • Yingqiang Han
    • 1
  • Xiaoguang Pan
    • 1
  1. 1.College of Physics and Electronics EngineeringNorthwest Normal UniversityLanzhouChina
  2. 2.Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu ProvinceNorthwest Normal UniversityLanzhouChina

Personalised recommendations