Advertisement

Magnetocaloric Properties of Gd5Si2Ge2 Alloy: Monte Carlo Simulation Study

  • Meysoun Jabrane
  • Moulay Youssef El Hafidi
  • Mohamed El HafidiEmail author
Original Paper
  • 13 Downloads

Abstract

There has been a significant increase in research of magnetocaloric materials because of its efficiency and environment friendliness for magnetic refrigeration applications at room temperature. The investigation of magnetocaloric effect (MCE) in RE5(SixGe1−x)4 alloys (where RE = Gd) shows large entropy changes ∆Sm over a wide range of temperature. In this work, we study the GMCE in Gd5Si2Ge2 alloy using Monte Carlo simulation. To attain this aim, we use DFT first to determine the exchange couplings of the alloy. The studied compound displays a magnetic entropy change of −∆Sm = 9.97 J/kg.K when subjected to a change of 0–5 T in the magnetic field, and also undergoes structural modifications whose effects recur on the magnetic behavior. In addition, this work is comforted by the agreement with previous experimental results.

Keywords

Magnetocaloric effect Crystallographic structure DFT Monte Carlo simulation Rare-earth alloys 

Notes

References

  1. 1.
    Pecharsky, V.K., Gschneidner Jr., K.A.: Giant magnetocaloric effect in Gd5Si2Ge2. Phys. Rev. Lett. 78, 4494–4497 (1997).  https://doi.org/10.1103/PhysRevLett.78.4494 ADSCrossRefGoogle Scholar
  2. 2.
    Miller, G.J.: Complex rare-earth tetrelides, RE5(SixGe1-x)4: new materials for magnetic refrigeration and a superb playground for solid state chemistry. Chem. Soc. Rev. 35, 799–813 (2006).  https://doi.org/10.1039/b208133b CrossRefGoogle Scholar
  3. 3.
    Deng, J.Q., Zhuang, Y.H., Li, J.Q., Zhou, K.W.: Magnetic phase transition and magnetocaloric effect in (Gd1-xTbx)5Si1.72Ge2.28 compounds. J. Alloys Compd. 428(1–2), 28–33 (2007).  https://doi.org/10.1016/j.jallcom.2006.03.78 CrossRefGoogle Scholar
  4. 4.
    Schlagel, D.L., Gschneidner Jr., K.A., Pecharsky, V.K., Ibarra, M.R.: Magnetism and magnetocaloric effect of single-crystal Er5Si4 under pressure. Phys. Rev. B. 85(2), 024408 (2012).  https://doi.org/10.1013/PhysRevB.85.024408 ADSCrossRefGoogle Scholar
  5. 5.
    Arnold, Z., Magen, C., Morellon, L., Algarabel, P.A., Kamarad, J., Ibarra, M.R., Pecharsky, V.K., Gschneidner Jr., K.A.: Magnetocaloric effect of Er5Si4 under hydrostatic pressure. Phys. Rev. B. 79(14), 144430 (2009).  https://doi.org/10.1103/PhysRevB.79.144430 ADSCrossRefGoogle Scholar
  6. 6.
    Niraj, K., Singh, V.K.P., Gschneidner Jr., K.A.: Unusual magnetic properties of (Er1-xGdx )5Si4 compounds. Phys. Rev. B: Condens. Matter Mater. Phys. 77(5), 054414–054410 (2008).  https://doi.org/10.1103/PhysRevB.79.144430 ADSCrossRefGoogle Scholar
  7. 7.
    Chen, X., Chen, Y., Tang, Y.: Influence of 1523 K annealing on phase and magnetic properties in (Gd1−xErx)5Si2Ge2 compounds. Bull. Mater. Sci. 34(5), 1103–1108 (2011).  https://doi.org/10.1007/s12034-011-0159-4 CrossRefGoogle Scholar
  8. 8.
    Pecharsky, A.O., Gschneidner Jr., K.A., Pecharsky, V.K.: The giant magnetocaloric effect of optimally prepared Gd5Si2Ge2. J. Appl. Phys. 93(8), 4722–4728 (2003).  https://doi.org/10.1063/1.1558210 ADSCrossRefGoogle Scholar
  9. 9.
    Choe, W., Pecharsky, V.K., Pecharsky, A.O., Gschneidner Jr., K.A., Young Jr., V.G., Miller, G.J.: Making and breaking covalent bonds across the magnetic transition in the giant magnetocaloric material Gd5Si2Ge2. Phys. Rev. Lett. 84(20), 4617–4620 (2000).  https://doi.org/10.1103/PhysRevLett.84.4617 ADSCrossRefGoogle Scholar
  10. 10.
    E. M. Levin, V. K. Pecharsky, And K. A. Gschneidner, Jr., Unusual magnetic behavior in Gd5Si1.5Ge2.5 and Gd5Si2Ge2”, Phys. Rev. B, 62 (22), 2000. DOI:  https://doi.org/10.4028/www.scientific.net/AMM.448-453.3514, 3514, 3518CrossRefGoogle Scholar
  11. 11.
    Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G., Cococcioni, M., Dabo, I., Dal Corso, A., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A., Smogunov, A., Umari, P., Wentzcovitch, R.: Quantum Espresso: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter. 21, 395502 (19pp) (2009).  https://doi.org/10.1088/0953-8984/21/39/395502 CrossRefGoogle Scholar
  12. 12.
    Tsai, S.H., Salinas, S.R.: Fourth-order cumulants to characterize the phase transitions of a Spin-1 Ising model. Braz. J. Phys. 28(1), 58–65 (1998).  https://doi.org/10.1590/S0103-97331998000100008 ADSCrossRefGoogle Scholar
  13. 13.
    Tishin A. M., Spichkin Y. I.: The Magnetocaloric Effect and its Application, vol. 14-27, p. 419. CRC Press (2003)  https://doi.org/10.1201/9781420033373.
  14. 14.
    Bruck, E.: Developments in magnetocaloric refrigeration. J. Phys. D. Appl. Phys. 38, R381–R391 (2005).  https://doi.org/10.1088/0022-3727/38/23/R01 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Meysoun Jabrane
    • 1
  • Moulay Youssef El Hafidi
    • 1
  • Mohamed El Hafidi
    • 1
    Email author
  1. 1.Condensed Matter Physics LaboratoryHassan II University of Casablanca, Faculty of Sciences Ben M’sikCasablancaMorocco

Personalised recommendations