Advertisement

Benchmark Analysis on Magnetic and Photoluminescence Properties of Selective Metal Ions Doped ZnS Nanoparticles

  • K. Manojkumar
  • B. Prasad
  • Y. Kranthi
  • J. S. K. Varma
  • K. Vinay
  • D. Amaranatha Reddy
  • K. SubramanyamEmail author
Original Paper
  • 32 Downloads

Abstract

The creation of diluted magnetic semiconductors (DMSs) at lower dimensions that exhibit room temperature ferromagnetism (RTFM) has been given immense significance for the fabrication of a new class of spintronic devices through utilizing spin degrees of freedom besides charge nature of electrons. In this view, nanocrystals of ZnS doped with 4% concentration of Fe, Co, Ni, Cr, Mn, Sr, Cu, and Ce have been synthesized at room temperature (RT) by chemical co-precipitation method. The samples were examined by various characterization techniques like energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), and photoluminescence (PL). EDS spectra revealed the existence of parent elements in the prepared samples. XRD characterization disclosed hexagonal structures of nanocrystals, and no secondary phases were observed in all the samples except for Cu and Ni doped ZnS. FTIR data confirmed the proper substitution of dopants in the host lattice as all the graphs have almost same stretchings. The magnetic nature of each sample was evaluated from M-H graphs of VSM, and it corroborated the transition of magnetic properties due to doping. Pristine ZnS showed diamagnetic nature, while Fe and Sr doped ZnS evinced strong ferromagnetic and anti-ferromagnetic properties, respectively. Photoluminescence studies on Ce, Sr and Mn doped ZnS samples revealed strong emission peaks with enhanced luminescence properties compared to bare ZnS. Cu, Cr and Mn doped ZnS exhibited a red shift in emission wavelengths, whereas Co doped ZnS showed emission peak shifted towards the blue region as compared to the host lattice.

Keywords

Transition metals ZnS DMS RTFM Photoluminescence 

Notes

Acknowledgements

We greatly acknowledge guidance in every step of our work. Dr. P. Satish Rama Chowdary, and Dr. A. Vijay Kumar, Raghu Engineering College, are acknowledged for their support in providing laboratories. We would like to acknowledge Dr. K. Vijaya Babu, Advanced Analytical Laboratory, A.U., for permitting us to utilize SEM, EDS, FTIR, and XRD instrumentation facilities. Further, we also acknowledge Dr. Rahul Mitra; CRF, IIT Kharagpur; CIF, IIT Guwahati; and SIC, IIT Indore for providing TEM, VSM, and PL instruments, respectively.

References

  1. 1.
    Jing, L., Biqin, H., Ian, A.: Appl. Phys. Lett. 92, 142507 (2008)CrossRefGoogle Scholar
  2. 2.
    Kuldeep, D., Manos, P.C., Kalita: J. Alloy Compd. 757, 209–220 (2018)CrossRefGoogle Scholar
  3. 3.
    Murali, G., Amaranatha Reddy, D., Poorna Prakash, B., Vijayalakshmi, R.P., Reddy, B.K., Venugopal, R.: Physica B. 407(12), 2084–2088 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    Kaur, N., Kaur, S., Singh, J., Rawat, J.: Bioelectron. Nanotechnol. 1(1), (2016)Google Scholar
  5. 5.
    Ramasamy, V., Praba, K., Murugadoss, G.: Spectrochim. Acta, Part A. 96, 963–971 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    Poornaprakash, B., Amaranatha Reddy, D., Murali, G., Vijayalakshmi, R.P., Reddy, B.K.: Phys. E. 73, 63–68 (2015)CrossRefGoogle Scholar
  7. 7.
    Song Wei, L., Burtrand Leea, I., Zhong Lin, W., Wusheng, T., Brent, K.W., Wounjhang, P., Christopher, J.S.: J. Lumin. 92, 73–78 (2001)Google Scholar
  8. 8.
    Poornaprakash, B., Sambasivam, S., Amaranatha Reddy, D., Murali, G., Vijayalakshmi, R.P., Reddy, B.K.: Ceram. Int. 40(2), 2677–2684 (2014)CrossRefGoogle Scholar
  9. 9.
    Sambasivam, S., Paul Joseph, D., Lin, J.G., Venkateswaran, C.: Doping induced magnetism in Co–ZnS nanoparticles. J. Solid State Chem. 182, 2598–2601 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    Amaranatha Reddy, D., Murali, G., Vijayalakshmi, R.P., Reddy, B.K.: Appl. Phys. A Mater. Sci. Process. 105, 119–124 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    Cullity, B.D., Elements of X-ray diffraction (2nd Edition), 102 (1978)Google Scholar
  12. 12.
    Poornaprakash, B., Poojitha, P.T., Chalapathi, U., Subramanyam, K., Park, S.-H.: Phys. E. 83, 180–185 (2016)CrossRefGoogle Scholar
  13. 13.
    Subramanyam, K., Sreelekha, N., Amaranatha Reddy, D., Murali, G., Poornaprakash, B., Ramu, S., Vijayalakshmi, R.P.: Solid-State Sci. 39, 74–81 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    Amaranatha Reddy, D., Chunli, L., Vijayalakshmi, R.P., Reddy, B.K.: J. Alloys Compd. 582, 257–264 (2014)CrossRefGoogle Scholar
  15. 15.
    Amaranatha Reddy, D., Murali, G., Poornaprakash, B., Vijayalakshmi, R.P., Reddy, B.K.: Appl. Surf. Sci. 258(13), 5206–5211 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    El Desokya, M.M., El-Barbarya, G.A., El Refaeya, D.E., Farid El, T.: Optik. 168, 764–777 (2018)ADSCrossRefGoogle Scholar
  17. 17.
    Varughese, G.: Mater. Today. 3(2), 282–288 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Sakthivel, P., Muthukumaran, S.: Opt. Laser Technol. 103, 109–117 (2018)ADSCrossRefGoogle Scholar
  19. 19.
    El-Hagary, M., Soltan, S.: Solid State Commun. 155, 29–33 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    Maobin, W., Jinghai, Y., Yongsheng, Y., Lili, Y., Jian, C., Hao. Fu., Bingji, W., Lin, F., Phys. E., 52, 144–149 (2013)Google Scholar
  21. 21.
    Alaria, J., Bieber, H., Colis, S., Schmerber, G., Dinia, A.: Appl. Phys. Lett. 88, 112503 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    Zhufeng, Z., Jin, L., Jikang, J., Rong, W., Yanfei, S., Shengfeng, W., Yinshuan, R., Jiajie, L.: J. Crystal Growth. 372, 39–42 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    Saikia, D., Raland, R.D., Borah, J.P.: Phys. E. 83, 56–63 (2016)CrossRefGoogle Scholar
  24. 24.
    Méçabih, S., Benguerine, K., Benosman, N., Abbar, B., Bouhafs, B.: Physica B. 403, 3452–3458 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    Sanjeev, K., Chen, C.L., Dong, C.L., Ho, Y.K., Lee, J.F., Chan, T.S., Thangavel, R., Chen, T.K., Mok, B.H., Rao, S.M., Wu, M.K.: J. Alloys Compd. 554, 357–362 (2013)CrossRefGoogle Scholar
  26. 26.
    Wenjian, F., Yongsheng, L., Baozhi, G., Lin, P., Yunbo, Z., Jincang, Z., Zhenjie, Z.: J. Alloys Compd. 584, 240–243 (2014)CrossRefGoogle Scholar
  27. 27.
    Xin, Z., Stevin, S., Pramana, S., Batabyal, K., Subodh, G., Mhaisalkar Xiaodong, C., Jinesh, K.B.: Phys. Chem. Chem. Phys. 15(18), 6763–6768 (2013)CrossRefGoogle Scholar
  28. 28.
    Shanmugam, N., Cholan, S., Viruthagiri, G., Gobi, R., Kannadasan, N.: Appl. Nanosci. 4(3), 359–365 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    Virpal Jitender, K., Thangaraj, R., Sandeep, S., Ravi Chand, S.: Appl. Surf. Sci. 416, 296–301 (2017)ADSCrossRefGoogle Scholar
  30. 30.
    Huaming, Y., Chenghuan, H., Xiaohui, S., Aidong, T.: J. Alloys Compd. 402(1–2), 274–277 (2005)Google Scholar
  31. 31.
    Borse, P.H., Deshmukh, N., Shinde, R.F., Date, S.K., Kulkarni, S.K.: J. Mater. Sci. 34, 6087–6093 (1999)ADSCrossRefGoogle Scholar
  32. 32.
    Lingdong, S., Chunhua, Y., Changhui, L., Chunsheng, L., Dan, Li., Jiaqi, Yu., J. Alloys Compd. 275, 234–237 (1998)Google Scholar
  33. 33.
    Raju, K., Chandrakar Baghel, R.N., Chandra, V.K., Chandra, B.P.: Superlatt. Microstruct. 86, 256–269 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    Subhajit, B., Soumitra, K., Subhadra, C.: J. Phys. Chem. B. 109, 17526–17530 (2005)CrossRefGoogle Scholar
  35. 35.
    Chong, B., Liqing, P., Mei, X., Jinhua, Y., Liangqiang, Q., Jiemin, L., Hao, Z., John, Q.X.: Materials Chem. and Phys. 116, 363–367 (2009)CrossRefGoogle Scholar
  36. 36.
    Jafarov, M.A., Nasirov, E.F., Jahangirova, S.A., Madridge, J.: NanoTech. 3(1), 89–91 (2018)Google Scholar
  37. 37.
    Laura, D., Loach, D., Ralph, H., Page Wilke, G.D., Stephen, A., Payne William, F.K.: IEEE J. Quantum Electron. 32, 885 (1966)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • K. Manojkumar
    • 1
  • B. Prasad
    • 1
  • Y. Kranthi
    • 1
  • J. S. K. Varma
    • 1
  • K. Vinay
    • 1
  • D. Amaranatha Reddy
    • 2
  • K. Subramanyam
    • 3
    Email author
  1. 1.Department of Mechanical EngineeringRaghu Engineering CollegeVisakhapatnamIndia
  2. 2.Department of Chemistry and Chemical Institute for Functional MaterialsPusan National UniversityBusanRepublic of Korea
  3. 3.Department of PhysicsSiddharth Institute of Engineering and TechnologyPutturIndia

Personalised recommendations