Influence of Ag on the Magnetic Anisotropy of Fe3O4 Nanocomposites

  • Ana Carla Batista de JesusEmail author
  • Cristiane Cupertino Santos Barbosa
  • Erilaine Barreto Peixoto
  • Jonathas Rafael de Jesus
  • Jorge Luiz da Silva Filho
  • Fernanda Antunes Fabian
  • Ivani Meneses Costa
  • José Gerivaldo dos Santos Duque
  • Cristiano Teles de Meneses
Original Paper


In this work, the thermal decomposition method is used to obtain Fe3O4-Ag nanocomposites. The weight losses observed in the thermogravimetric measurements are used to estimate the amount of organic mass present in the samples. Fourier-transform infrared (FTIR) spectra show characteristic absorption peaks of the stretching vibration of the Fe-O and C-H groups. Samples are characterized structurally and morphologically by measurements of X-ray diffraction (XRD) and transmission electronic microscopy (TEM), respectively. The XRD patterns indicate the formation of a cubic phase with spinel crystallographic structure. Particles sizes analysis estimated by Scherrer’s equation for Fe3O4 phase show that sizes are unaffected by the Ag-insertion. TEM images reveal that the nanoparticles have a spherical-like shape and a mean particles sizes ranging 3 < d < 4 nm. The best fits of zero-field-cooling and field-cooling (ZFC/FC) curves allow us to state that the magnetic anisotropy constant decreasing as a function of Ag concentration.


Nanocomposites Thermal decomposition Anisotropy constant 



The authors thank CMNano-UFS for providing laboratory access.

Funding Information

This work was supported by the Brazilian funding agencies CNPq (455608/2014-8, 455970/2014-9 and 152026/2016-9), FAPITEC (PRONEX). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.


  1. 1.
    Pankhurst, Q.A., Connolly, J., Jones, S.K., Dobson, J.: Applications of magnetic nanoparticles in biomedicine. J. Phys. D. Appl. Phys. 36, R167–R181 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    Berry, C.C.: Possible exploitation of magnetic nanoparticle–cell interaction for biomedical applications. J. Mater. Chem. 15, 543–547 (2005)CrossRefGoogle Scholar
  3. 3.
    Matsunaga, T., Okamura, Y., Tanaka, T.: Biotechnological application of nano-scale engineered bacterial magnetic particles. J. Mater. Chem. 14, 2099–2105 (2004)CrossRefGoogle Scholar
  4. 4.
    Hu, Y., Wang, R., Wang, S., Ding, L., Li, J., Luo, Y., Wang, X., Shen, M., Shi, X.: Multifunctional Fe3O4 @ Au core/shell nanostars: a unique platform for multimode imaging and photothermal therapy of tumors. Sci. Rep. 6, 28325 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    Yang, H.H., Zhang, S.Q., Chen, X.L., Zhuang, Z.X., Xu, J.G., Wang, X.R.: Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparations. Anal. Chem. 76, 1316–1321 (2004)CrossRefGoogle Scholar
  6. 6.
    Bedanta, S., Kileemann, W., Supermagnetism, J.: Phys. D. Appl. Phys. 42, 013001 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    Wu, W., He, Q., Jiang, C.: Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies nanoscale. Res. Lett. 3, 397–415 (2008)Google Scholar
  8. 8.
    Coey, J.M.: Noncollinear spin arrangement in ultrafine ferrimagnetic crystallites. Phys. Rev. Lett. 27, 1140–1142 (1971)ADSCrossRefGoogle Scholar
  9. 9.
    Parker, F.T., Foster, M.W., Margulies, D.T., Berkowitz, A.E.: Spin canting, surface magnetization, and finite-size effects in γ-Fe2O3 particles. Phys. Rev. B 47, 7885–7891 (1993)ADSCrossRefGoogle Scholar
  10. 10.
    Kubickova, S., Niznansky, D., Morales Herrero, M.P., Salas, G., Vejpravova, J.: Structural disorder versus spin canting in monodisperse maghemite nanocrystals. Appl. Phys. Lett. 104, 223105 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    Negi, D.S., Sharona, H., Bhat, U., Palchoudhury, S., Gupta, A., Datta, R.: Surface spin canting in Fe3O4 and CoFe2O4 nanoparticles probed by high-resolution electron energy loss spectroscopy. Phys. Rev. B 95, 174444 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    Barbeta, V.B., Jardim, R.F., Kiyohara, P.K., Effenberger, F.B., Rossi, L.M.: Magnetic properties of Fe3O4 nanoparticles coated with oleic and dodecanoic acids. J. Appl. Phys. 107, 073913 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Sun, S., Zeng, H., Robinson, D.B., Raoux, S., Rice, P.M., Wang, S.X., Li, G.: Monodisperse MFe2O4 (M ) Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc. 126, 273–279 (2004)CrossRefGoogle Scholar
  14. 14.
    Skoropata, E., Desautels, R.D., Chi, C.C., Ouyang, H., Freeland, J.W., van Lierop, J.: Magnetism of iron oxide based core-shell nanoparticles from interface mixing with enhanced spin-orbit coupling. Phys. Rev. B 89, 024410 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    Zhang, L., Dou, Y.H., Gu, H.C.: Synthesis of Ag–Fe3O4 heterodimeric nanoparticles. J. Colloid Interface Sci. 297, 660–664 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    Bao, Z.Y., Dai, J., Lei, D.Y., Wu, Y.: Maximizing surface-enhanced Raman scattering sensitivity of surfactant-free Ag-Fe3O4 nanocomposites through optimization of silver nanoparticle density and magnetic self-assembly. J. Appl. Phys. 114, 124305 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    Lopes, G., Vargas, J.M., Sharma, S.K., Beron, F., Pirota, K.R., Knobel, M., Rettori, C., Zysler, R.D.: Ag-Fe3O4 dimer colloidal nanoparticles: synthesis and enhancement of magnetic properties. J. Phys. Chem. C 114, 10148–10152 (2010)CrossRefGoogle Scholar
  18. 18.
    Xu, Z., Hou, Y., Sun, S.: Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. J. Am. Chem. Soc. 129, 8698–8699 (2007)CrossRefGoogle Scholar
  19. 19.
    Liu, J., Zhao, Z., Feng, H., Cui, F.: One-pot synthesis of Ag–Fe3O4 nanocomposites in the absence of additional reductant and its potent antibacterial properties. J. Mater. Chem. 22, 13891–13894 (2012)CrossRefGoogle Scholar
  20. 20.
    Gong, P., Li, H., He, X., Wang, K., Hu, J., Tan, W., Zhang, S., Yang, X.: Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnology 18, 285604 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    Muraca, D., Sharma, S.K., Socolovsky, L.M., de Siervo, A., Lopes, G., Pirota, K.R.: Influence of silver concentrations on structural and magnetic properties of Ag-Fe3O4 heterodimer nanoparticles. J. Nanocience Nanotechnol. 12, 6961–696 (2012)CrossRefGoogle Scholar
  22. 22.
    Lin, F.H., Peng, H.H., Yang, Y.H., Doong, R.: Size and morphological effect of Au–Fe3O4 heterostructures on magnetic resonance imaging. J. Nanoparticle Res. 15, 2139 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    Bao, F., Yao, J.L., Gu, R.A.: Synthesis of magnetic Fe2O3/Au core/shell nanoparticles for bioseparation and immunoassay based on surface-enhanced Raman spectroscopy. Langmuir 25, 10782–10787 (2009)CrossRefGoogle Scholar
  24. 24.
    Guo, H., Zhao, A., Wang, R., Wang, D., Wang, L., Gao, Q., Sun, H., Li, L., He, Q.: Generalized green synthesis of Fe3O4/Ag composites with excellent SERS activity and their application in fungicide detection. J. Nanoparticle Res. 17, 494 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    Haddad, P.S., Martins, T.M., Souza-Li, L., Li, L.M., Metze, K., Adam, R.L., Knobel, M., Zanchet, D.: Structural and morphological investigation of magnetic nanoparticles based on iron oxides for biomedical applications. Mater. Sci. e Eng. C 28, 489–494 (2008)CrossRefGoogle Scholar
  26. 26.
    Peixoto, E.B., Carvalho, M.H., Meneses, C.T., Sarmento, V.H.V., Coelho, A.A., Zucolotto, B., Duque, J.G.S.: Analysis of zero field and field cooled magnetization curves of CoFe2O4 nanoparticles with a T-dependence on the magnetization saturation. J. Alloys Compd. 721, 525 (2017)CrossRefGoogle Scholar
  27. 27.
    Mandal, M., Kundu, S., Ghosh, S.K., Panigrahi, S., Sau, T.K., Yusuf, S.M., Pal, T.: Magnetite nanoparticles with tunable gold or silver shell. J. Colloid Interface Sci. 286, 187–194 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    Ge, Y., Zhang, Y., He, S., Nie, F., Teng, G., Gu, N.: Fluorescence modified chitosan-coated magnetic nanoparticles for high-efficient cellular imaging. Nanoscale Res. Lett. 4, 287–295 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    Cannas, C., Musinu, A., Piccaluga, G.: Magnetic properties of cobalt ferrite–silica nanocomposites prepared by a sol-gel autocombustion technique. J. Chem. Phys. 125, 164714 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    Zysler, R.D., Fiorani, D., Testa, A.M.: Investigation of magnetic properties of interacting Fe2O3 nanoparticles. J. Magn. Magn. Mater. 224, 5–11 (2001)ADSCrossRefGoogle Scholar
  31. 31.
    Du, Q., Tan, L., Li, B., Liu, T., Ren, J., Huang, Z., Tang, F., Meng, X.: One-pot gradient solvothermal synthesis of the Ag/Au-Fe3O4 composite nanoparticles and their applications. R. Soc. Chem. Adv. 4, 56057 (2014)Google Scholar
  32. 32.
    Ramesh, R., Geerthana, M., Prabhu, S., Sohila, S.: Synthesis and characterization of the superparamagnetic Fe3O4/Ag nanocomposites. J. Clust. Sci. 28, 963 (2017)CrossRefGoogle Scholar
  33. 33.
    Mendonça, E.C., Tenório, M.A., Mecena, S.G., Zucolotto, B., Silva, L.S., Jesus, C.B.R., Meneses, C.T., Duque, J.G.S.: Intrinsic dependence of the magnetic properties of CoFe2O4 nanoparticles prepared via chemical methods with addition of chelating agents. J. Magn. Magn. Mater. 395, 345–349 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    Amarjargal, A., Tijing, L.D., Im, I.-T., Kim, C.S.: Simultaneous preparation of Ag/Fe3O4 core-shell nanocomposites with enhanced magnetic moment and strong antibacterial and catalytic properties. Chem. Eng. J. 226, 243 (2013)CrossRefGoogle Scholar
  35. 35.
    Jiang, W., Zhou, Y., Zhang, Y., Xuanb, S., Gong, X.: Superparamagnetic Ag@Fe3O4 core–shell nanospheres: fabrication, characterization and application as reusable nanocatalysts. Dalton Trans. 41, 4594–4601 (2012)CrossRefGoogle Scholar
  36. 36.
    Pisane, K.L., Singh, S., Seehra, M.S.: Synthesis, structural characterization and magnetic properties of Fe/Pt coreshell nanoparticles. J. Appl. Phys. 117, 17D708 (2015)CrossRefGoogle Scholar
  37. 37.
    Leostean, C., Pana, O., Turcu, R., Soran, M.L., Macavei, S., Chauvet, O., Payen, C.: Comparative study of core–shell iron/iron oxide gold covered magnetic nanoparticles obtained in different conditions. J. Nanopart. Res. 13, 6181–6192 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ana Carla Batista de Jesus
    • 1
    Email author
  • Cristiane Cupertino Santos Barbosa
    • 1
  • Erilaine Barreto Peixoto
    • 1
  • Jonathas Rafael de Jesus
    • 1
  • Jorge Luiz da Silva Filho
    • 2
  • Fernanda Antunes Fabian
    • 3
  • Ivani Meneses Costa
    • 4
  • José Gerivaldo dos Santos Duque
    • 1
    • 5
  • Cristiano Teles de Meneses
    • 1
    • 5
  1. 1.Programa de Pós-Graduação em FísicaUniversidade Federal de Sergipe-UFSSão CristóvãoBrazil
  2. 2.Programa de Pós-Graduação em Ciência e Engenharia de Materiais - P2CEMUniversidade Federal de Sergipe-UFSSão CristóvãoBrazil
  3. 3.Departamento de FísicaFundação Universidade Federal de Rondônia-UNIRPorto VelhoBrazil
  4. 4.Programa de Pós-Graduação em FísicaUniversidade Federal de São Carlos-UFSCarSão CarlosBrazil
  5. 5.Departamento de FísicaUniversidade Federal de Sergipe-UFSItabaianaBrazil

Personalised recommendations