Advertisement

Synthesis, Characterization, and Magnetic Properties of A2Co2Fe(VO4)3 (A = Ag or Na) Alluaudite-Type Vanadates

  • Mohammed Hadouchi
  • Abderrazzak Assani
  • Mohamed Saadi
  • Abdelilah Lahmar
  • Mimoun El Marssi
  • Mohammed Sajieddine
  • Lahcen El Ammari
Original Paper
  • 31 Downloads

Abstract

We successfully synthesized the polycrystalline form of vanadates A2Co2Fe(VO4)3 (A = Ag or Na) using sol–gel method. Powder X-ray diffraction analysis allowed the identification of the alluaudite-type vanadate structure. The morphology and the elemental composition of the synthesized powders were analyzed by scanning electron microscopy (SEM) and energy-dispersive X-ray spectrometer (EDS). The two vanadates A2Co2Fe(VO4)3 (A = Ag or Na) were further characterized by infrared and Raman spectroscopies to get complementary structural information. The infrared and Raman spectroscopy-observed bands were assigned to VO43− vibration modes. The room temperature 57Fe Mössbauer spectroscopy confirmed the +III oxidation state of iron. Magnetic properties of these vanadates were investigated. The magnetic susceptibility data reveal that the predominant interactions in these vanadates are antiferromagnetic with a Curie−Weiss constant of θ = − 125.6 K for Na2Co2Fe(VO4)3 and θ = − 104.5 K for Ag2Co2Fe(VO4)3. The magnetic interactions in these vanadates were discussed according to semiempirical Goodenough–Kanamori–Anderson rules (GKA).

Keywords

Vanadate Alluaudite-type structure Magnetic properties Powder X-ray diffraction Mössbauer spectroscopy 

Notes

Funding Information

This work was done with the support of CNRST (Centre National pour la Recherche Scientifique et Technique) in the Excellence Research Scholarships Program.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Guo, S.-P., Li, J.-C., Xu, Q.-T., Ma, Z., Xue, H.-G.: Recent achievements on polyanion-type compounds for sodium-ion batteries: syntheses, crystal chemistry and electrochemical performance. J. Power Sources. 361, 285–299 (2017).  https://doi.org/10.1016/j.jpowsour.2017.07.002 ADSCrossRefGoogle Scholar
  2. 2.
    Masquelier, C., Croguennec, L.: Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. Chem. Rev. 113, 6552–6591 (2013).  https://doi.org/10.1021/cr3001862 CrossRefGoogle Scholar
  3. 3.
    Clearfield, A., Thakur, D.S.: Zirconium and titanium phosphates as catalysts: a review. Appl. Catal. 26, 1–26 (1986).  https://doi.org/10.1016/S0166-9834(00)82538-5 CrossRefGoogle Scholar
  4. 4.
    Ghiyasiyan-Arani, M., Masjedi-Arani, M., Salavati-Niasari, M.: Size controllable synthesis of cobalt vanadate nanostructures with enhanced photocatalytic activity for the degradation of organic dyes. J. Mol. Catal. Chem. 425, 31–42 (2016).  https://doi.org/10.1016/j.molcata.2016.09.023 CrossRefGoogle Scholar
  5. 5.
    Natarajan, S., Mandal, S.: Open-framework structures of transition-metal compounds. Angew. Chem. Int. Ed. 47, 4798–4828 (2008).  https://doi.org/10.1002/anie.200701404 CrossRefGoogle Scholar
  6. 6.
    Cheetham, A.K., Férey, G., Loiseau, T.: Open-framework inorganic materials. Angew. Chem. Int. Ed. 38, 3268–3292 (1999).  https://doi.org/10.1002/(SICI)1521-3773(19991115)38:22<3268::AID-ANIE3268>3.0.CO;2-U CrossRefGoogle Scholar
  7. 7.
    Moore, P.B.: Crystal chemistry of the alluaudite structure type: contribution to the para-genesis of pegmatite phosphate giant crystals. Am. Mineral. 56, 1955–1975 (1971)Google Scholar
  8. 8.
    Hatert, F., Fransolet, A.-M., Maresch, W.V.: The stability of primary alluaudites in granitic pegmatites: an experimental investigation of the Na2(Mn2−2xFe1+2x)(PO4)3 system. Contrib. Mineral. Petrol. 152, 399–419 (2006).  https://doi.org/10.1007/s00410-006-0115-2 ADSCrossRefGoogle Scholar
  9. 9.
    Khmiyas, J., Assani, A., Saadi, M., El Ammari, L.: Crystal structure of a sodium, zinc and iron(III)-based non-stoichiometric phosphate with an alluaudite-like structure: Na1.67 Zn1.67Fe1.33(PO4)3. Acta Crystallogr. Sect. E Crystallogr. Commun. 71, 690–692 (2015).  https://doi.org/10.1107/S2056989015009767 CrossRefGoogle Scholar
  10. 10.
    Assani, A., Saadi, M., Zriouil, M., El Ammari, L.: Silver trimagnesium phosphate bis(hydrogenphosphate), AgMg3(PO4)(HPO4)2, with an alluaudite-like structure. Acta Crystallogr. Sect. E Struct. Rep. Online. 67, i5 (2011).  https://doi.org/10.1107/S1600536810053304 CrossRefGoogle Scholar
  11. 11.
    Kim, J., Kim, H., Lee, S., Myung, S.-T.: Development of a new alluaudite-based cathode material with high power and long cyclability for application in Na ion batteries in real-life. J. Mater. Chem. A. 5, 22334–22340 (2017).  https://doi.org/10.1039/C7TA06693G CrossRefGoogle Scholar
  12. 12.
    Karegeya, C., Mahmoud, A., Vertruyen, B., Hatert, F., Hermann, R.P., Cloots, R., Boschini, F.: One-step hydrothermal synthesis and electrochemical performance of sodium-manganese-iron phosphate as cathode material for Li-ion batteries. J. Solid State Chem. 253, 389–397 (2017).  https://doi.org/10.1016/j.jssc.2017.06.021 ADSCrossRefGoogle Scholar
  13. 13.
    Fisher, D.J.: Alluaudite. Am. Mineral. 40, 1100–1109 (1955)Google Scholar
  14. 14.
    Hatert, F., Keller, P., Lissner, F., Antenucci, D., Fransolet, A.-M.: First experimental evidence of alluaudite-like phosphates with high Li-content: the (Na1-xLix)MnFe2(PO4)3 series (x = 0 to 1). Eur. J. Mineral. 12, 847–857 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    Hatert, F.: Crystal chemistry of the divalent cation in alluaudite-type phosphates: a structural and infrared spectral study of the Na1.5(Mn1-xM2+x)1.5Fe1.5(PO4)3 solid solutions (x = 0 to 1, M2+ = Cd2+, Zn2+). J. Solid State Chem. 181, 1258–1272 (2008).  https://doi.org/10.1016/j.jssc.2008.02.035 ADSCrossRefGoogle Scholar
  16. 16.
    Hatert, F.: Crystal chemistry of the hydrothermally synthesized Na2(Mn1-xFex 2+)2Fe3+(PO4)3 alluaudite-type solid solution. Am. Mineral. 90, 653–662 (2005).  https://doi.org/10.2138/am.2005.1551 ADSCrossRefGoogle Scholar
  17. 17.
    Karegeya, C., Mahmoud, A., Hatert, F., Vertruyen, B., Cloots, R., Lippens, P.-E., Boschini, F.: Na1.25Ni1.25Fe1.75(PO4)3 nanoparticles as a janus electrode material for Li-ion batteries. J. Power Sources. 388, 57–64 (2018).  https://doi.org/10.1016/j.jpowsour.2018.03.069 ADSCrossRefGoogle Scholar
  18. 18.
    Essehli, R., Belharouak, I., Ben Yahia, H., Maher, K., Abouimrane, A., Orayech, B., Calder, S., Zhou, X.L., Zhou, Z., Sun, Y.-K.: Alluaudite Na2Co2Fe(PO4)3 as an electroactive material for sodium ion batteries. Dalton Trans. 44, 7881–7886 (2015).  https://doi.org/10.1039/C5DT00971E CrossRefGoogle Scholar
  19. 19.
    Essehli, R., Ben Yahia, H., Maher, K., Sougrati, M.T., Abouimrane, A., Park, J.-B., Sun, Y.-K., Al-Maadeed, M.A., Belharouak, I.: Unveiling the sodium intercalation properties in Na1.860.14Fe3(PO4)3. J. Power Sources. 324, 657–664 (2016).  https://doi.org/10.1016/j.jpowsour.2016.05.125 ADSCrossRefGoogle Scholar
  20. 20.
    Liu, D., Palmore, G.T.R.: Synthesis, crystal structure, and electrochemical properties of alluaudite Na1.702Fe3(PO4)3 as a sodium-ion battery cathode. ACS Sustain. Chem. Eng. 5, 5766–5771 (2017).  https://doi.org/10.1021/acssuschemeng.7b00371 CrossRefGoogle Scholar
  21. 21.
    Hadouchi, M., Assani, A., Saadi, M., Saadoune, I., Lahmar, A., Bouyanfif, H., El Marssi, M., El Ammari, L.: Synthesis, crystal structure and properties of a new phosphate, Na2Co2Cr(PO4)3. J. Inorg. Organomet. Polym. Mater. 28, 2854–2864 (2018).  https://doi.org/10.1007/s10904-018-0956-y CrossRefGoogle Scholar
  22. 22.
    Chouaibi, N., Daidouh, A., Pico, C., Santrich, A., Veiga, M.L.: Neutron diffraction, Mössbauer spectrum, and magnetic behavior of Ag2FeMn2(PO4)3 with alluaudite-like structure. J. Solid State Chem. 159, 46–50 (2001).  https://doi.org/10.1006/jssc.2001.9128 ADSCrossRefGoogle Scholar
  23. 23.
    Stock, N., Stucky, G., Cheetham, A.: Influence of the cation size on the formation of alluaudite-type manganese arsenates: synthesis and characterization of Tl2Mn3(As2O7)2·2H2O, CsMn3(AsO4)(HAsO4)2·3H2O, and XMn3(AsO4)(HAsO4)2 (X = Na, K). J. Phys. Chem. Solids. 62, 1457–1467 (2001).  https://doi.org/10.1016/S0022-3697(01)00062-2 ADSCrossRefGoogle Scholar
  24. 24.
    Krivovichev, S.V., Vergasova, L.P., Filatov, S.K., Rybin, D.S., Britvin, S.N., Ananiev, V.V.: Hatertite, Na2(Ca, Na)(Fe3+,Cu)2(AsO4)3, a new alluaudite-group mineral from Tolbachik fumaroles, Kamchatka peninsula, Russia. Eur. J. Mineral. 25, 683–691 (2013).  https://doi.org/10.1127/0935-1221/2013/0025-2311 ADSCrossRefGoogle Scholar
  25. 25.
    Dwibedi, D., Ling, C.D., Araujo, R.B., Chakraborty, S., Duraisamy, S., Munichandraiah, N., Ahuja, R., Barpanda, P.: Ionothermal synthesis of high-voltage alluaudite Na2+2xFe2-x(SO4)3 sodium insertion compound: structural, electronic, and magnetic insights. ACS Appl. Mater. Interfaces. 8, 6982–6991 (2016)CrossRefGoogle Scholar
  26. 26.
    Hadouchi, M., Assani, A., Saadi, M., El Ammari, L.: The alluaudite-type crystal structures of Na2(Fe/Co)2Co(VO4)3 and Ag2(Fe/Co)2Co(VO4)3. Acta Crystallogr. Sect. E Crystallogr. Commun. 72, 1017–1020 (2016).  https://doi.org/10.1107/S2056989016009981 CrossRefGoogle Scholar
  27. 27.
    Ben Yahia, H., Shikano, M., Tabuchi, M., Belharouak, I.: Synthesis, crystal structure, and properties of the alluaudite-type vanadates Ag2–xNaxMn2Fe(VO4)3. Inorg. Chem. 55, 4643–4649 (2016).  https://doi.org/10.1021/acs.inorgchem.6b00486 CrossRefGoogle Scholar
  28. 28.
    Lamsakhar, N.E.H., Zriouil, M., Assani, A., Saadi, M., El Ammari, L.: Crystal structure of disilver(I) dizinc(II) iron(III) tris(orthovanadate) with an alluaudite-type structure. Acta Crystallogr. Sect. E Crystallogr. Commun. 74, 1155–1158 (2018).  https://doi.org/10.1107/S205698901801071X CrossRefGoogle Scholar
  29. 29.
    Essehli, R., Bali, B.E., Benmokhtar, S., Bouziane, K., Manoun, B., Abdalslam, M.A., Ehrenberg, H.: Crystal structures and magnetic properties of iron (III)-based phosphates: Na4NiFe(PO4)3 and Na2Ni2Fe(PO4)3. J. Alloys Compd. 509, 1163–1171 (2011).  https://doi.org/10.1016/j.jallcom.2010.08.159 CrossRefGoogle Scholar
  30. 30.
    Leroux, F., Mar, A., Payen, C., Guyomard, D., Verbaere, A., Piffard, Y.: Synthesis and structure of NaMn3(PO4)(HPO4)2, an unoxidized variant of the alluaudite structure type. J. Solid State Chem. 115, 240–246 (1995).  https://doi.org/10.1006/jssc.1995.1127 ADSCrossRefGoogle Scholar
  31. 31.
    Le Bail, A.: Whole powder pattern decomposition methods and applications: a retrospection. Powder Diffract. 20, 316–326 (2005).  https://doi.org/10.1154/1.2135315 ADSCrossRefGoogle Scholar
  32. 32.
    Petříček, V., Dušek, M., Palatinus, L.: Crystallographic computing system JANA2006: general features. Z. Für Krist. - Cryst. Mater. 229, (2014).  https://doi.org/10.1515/zkri-2014-1737
  33. 33.
    Bouraima, A., Makani, T., Assani, A., Saadi, M., El Ammari, L.: Crystal structure of a silver-, cobalt- and iron-based phosphate with an alluaudite-like structure: Ag1.655Co1.64Fe1.36(PO4)3. Acta Crystallogr. Sect. E Crystallogr. Commun. 73, 890–892 (2017).  https://doi.org/10.1107/S205698901700740X CrossRefGoogle Scholar
  34. 34.
    Ross, S.D.: Inorganic Infrared and Raman Spectra. McGraw-Hill, London (1972)Google Scholar
  35. 35.
    Farmer, V.C. (ed.): The Infrared Spectra of Minerals. Mineralogical Society, London (1974)Google Scholar
  36. 36.
    Busca, G., Ricchiardi, G., Sam, D.S.H., Volta, J.-C.: Spectroscopic characterization of magnesium vanadate catalysts. Part 1.—Vibrational characterization of Mg3(VO4)2, Mg2V2O7 and MgV2O6 powders. J Chem Soc Faraday Trans. 90, 1161–1170 (1994).  https://doi.org/10.1039/FT9949001161 CrossRefGoogle Scholar
  37. 37.
    Busca, G.: Differentiation of mono-oxo and polyoxo and of monomeric and polymeric vanadate, molybdate and tungstate species in metal oxide catalysts by IR and Raman spectroscopy. J. Raman Spectrosc. 33, 348–358 (2002).  https://doi.org/10.1002/jrs.867 ADSCrossRefGoogle Scholar
  38. 38.
    Frost, R.L., Palmer, S.J., Čejka, J., Sejkora, J., Plášil, J., Bahfenne, S., Keeffe, E.C.: A Raman spectroscopic study of the different vanadate groups in solid-state compounds-model case: mineral phases vésigniéite [BaCu3(VO4)2(OH)2] and volborthite [Cu3V2O7(OH)2·2H2O]. J. Raman Spectrosc. 42, 1701–1710 (2011).  https://doi.org/10.1002/jrs.2906 ADSCrossRefGoogle Scholar
  39. 39.
    Menil, F.: Systematic trends of the 57Fe Mössbauer isomer shifts in (FeOn) and (FeFn) polyhedra. Evidence of a new correlation between the isomer shift and the inductive effect of the competing bond T-X (→ Fe) (where X is O or F and T any element with a formal positive charge). J. Phys. Chem. Solids. 46, 763–789 (1985).  https://doi.org/10.1016/0022-3697(85)90001-0 ADSCrossRefGoogle Scholar
  40. 40.
    Ostrovsky, S.M., Falk, K., Pelikan, J., Brown, D.A., Tomkowicz, Z., Haase, W.: Orbital angular momentum contribution to the magneto-optical behavior of a binuclear cobalt(II) complex. Inorg. Chem. 45, 688–694 (2006).  https://doi.org/10.1021/ic0514748 CrossRefGoogle Scholar
  41. 41.
    Zarembowitch, J., Kahn, O.: Magnetic properties of some spin-crossover, high-spin, and low-spin cobalt(II) complexes with Schiff bases derived from 3-formylsalicylic acid. Inorg. Chem. 23, 589–593 (1984).  https://doi.org/10.1021/ic00173a020 CrossRefGoogle Scholar
  42. 42.
    Moriya, T.: Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).  https://doi.org/10.1103/PhysRev.120.91 ADSCrossRefGoogle Scholar
  43. 43.
    Zheng, L.-M., Gao, S., Yin, P., Xin: One-dimensional cobalt diphosphonates exhibiting weak ferromagnetism and field-induced magnetic transitions. Inorg. Chem. 43, 2151–2156 (2004).  https://doi.org/10.1021/ic034614r CrossRefGoogle Scholar
  44. 44.
    Lu, Y.-B., Wang, M.-S., Zhou, W.-W., Xu, G., Guo, G.-C., Huang, J.-S.: Novel 3-D PtS-like tetrazolate-bridged manganese(II) complex exhibiting spin-canted antiferromagnetism and field-induced spin-flop transition. Inorg. Chem. 47, 8935–8942 (2008).  https://doi.org/10.1021/ic801026y CrossRefGoogle Scholar
  45. 45.
    Ramirez, A.P.: Strongly geometrically frustrated magnets. Annu. Rev. Mater. Sci. 24, 453–480 (1994).  https://doi.org/10.1146/annurev.ms.24.080194.002321 ADSCrossRefGoogle Scholar
  46. 46.
    Kanamori, J.: Superexchange interaction and symmetry properties of electron orbitals. J. Phys. Chem. Solids. 10, 87–98 (1959).  https://doi.org/10.1016/0022-3697(59)90061-7 ADSCrossRefGoogle Scholar
  47. 47.
    Anderson, P.W.: New approach to the theory of superexchange interactions. Phys. Rev. 115, 2–13 (1959).  https://doi.org/10.1103/PhysRev.115.2 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Goodenough, J.B.: Magnetism and the Chemical Bond. Wiley, NY-London (1963)Google Scholar
  49. 49.
    Geertsma, W., Khomskii, D.: Influence of side groups on 90° superexchange: a modification of the Goodenough-Kanamori-Anderson rules. Phys. Rev. B. 54, 3011–3014 (1996).  https://doi.org/10.1103/PhysRevB.54.3011 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of SciencesMohammed V University in RabatRabatMorocco
  2. 2.Laboratoire de Physique de La Matière Condensée (LPMC)Université de Picardie Jules VerneAmiensFrance
  3. 3.Laboratoire de Physique des Matériaux, Faculté des Sciences et TechniquesUniversité Sultan Moulay SlimaneBeni-MellalMorocco

Personalised recommendations